

ERIN DELARGY

Binghamton University

Moravian University

HARARY INDEX

Let G be a graph with vertex set V(G) and edge set E(G). The **Harary index** of G is the sum of the reciprocals of the distances between every pair of vertices in V(G).

$$H(G) = \frac{1}{2} \sum_{u,v \in V(G)} \frac{1}{dist(u,v)}$$

where $u \neq v$.

PATH EXAMPLE

Let P_n be the path graph with *n* vertices.

The Harary index of a path of length 5 is

$$H(P_5) = 4 \cdot \frac{1}{1} + 3 \cdot \frac{1}{2} + 2 \cdot \frac{1}{3} + 1 \cdot \frac{1}{4}$$
$$= \frac{77}{12}$$

DEFINITIONS

We define $\mathcal{G}(n,m)$, as the set of all graphs with nvertices and *m* edges.

If G is a graph and e is an edge in E(G), then we denote G - e as the resulting graph when edge eis removed from E(G).

The **change in the Harary index** when an edge e is removed from graph G is denoted as

$$\Delta H(G, e) = H(G) - H(G - e).$$

The **maximum change** in the Harary index with a single edge removal is defined as

 $\Delta^+ H(G) = \max_{e \in E(G)} (\Delta H(G, e)).$

Similarly, the **minimum change** is defined as

 $\Delta^{-}H(G) = \min_{e \in E(G)} (\Delta H(G, e)).$

THE HARARY INDEX AS A NETWORK RELIABILITY PARAMETER GABRIELLE DEMCHAK KATIE LEVANDOSKY MARIA PASAYLO ADVISORS: NATHAN SHANK & TAOYE ZHANG

Northeastern University

University of Florida

EXTREMAL CASES FOR EDGE REMOVAL IN $\mathcal{G}(n,m)$

MIN MIN	M
We define the min-min change in graph class \mathcal{G}	We
with a single edge removal as	as

$$\min \Delta^{-}(\mathcal{G}) = \min_{G \in \mathcal{G}} \Delta^{-}H(G).$$

This is the minimum change in the Harary index This is the maximum change in Harary index refor a single edge removal for all graphs in \mathcal{G} . sulting from a single edge removal over all graphs We found: in \mathcal{G} .

1	if $m = 1$ and $n \ge 2$
$\frac{3}{2}$	if $m = 2$ and $n = 3$
1	if $m = 2$ and $n > 3$
$\frac{1}{2}$	otherwise

Ex. m = 11, n = 6

MIN MAX

We define the **min-max change** in graph class Gwith a single edge removal as

$$\min \Delta^+(\mathcal{G}) = \min_{G \in \mathcal{G}} \Delta^+ H(G).$$
 We wi

This is the minimum, over all graphs in \mathcal{G} , of the maximum change in the Harary index with a single edge removal.

We found:

$$\min \Delta^+(\mathcal{G}(n,m)) = \begin{cases} 1 & \text{if } m = 1 \\ \frac{3}{2} & \text{if } m = 2 \text{ and } n = 3 \\ 1 & \text{if } m = 2 \text{ and } n \ge 4 \\ \frac{2}{3} & \text{if } m = 4 \text{ and } n \ge 4 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Ex. m = 12, n = 6

Moravian University & Pennsylvania State University

AX MAX

We define **max-max change** in graph class \mathcal{G} with single edge removal as

$$\max \Delta^+(\mathcal{G}) = \max_{G \in \mathcal{G}} \Delta^+ H(G).$$

For any graph *G* with *n* vertices, and $a = \lfloor \frac{n-2}{2} \rfloor$, and $b = \lceil \frac{n-2}{2} \rceil$, we found:

$$\Delta^{+}H(G) \le 1 + \frac{n-2}{2} + \frac{ab}{3}$$

When m < n, equality in the above statement holds for the double star graph $D_{a,b}$, so

MAX MIN

We define the max-min change in graph class $\mathcal G$ ith a single edge removal as

$$\max \Delta^{-}(\mathcal{G}) = \max_{G \in \mathcal{G}} \Delta^{-}H(G)$$

This is the maximum, over all graphs in \mathcal{G} , of the minimum change in the Harary index with a sine edge removal.

The m < n, we found:

$$\max \Delta^{-}(\mathcal{G}(n,m)) = \frac{m+1}{2}.$$

his is satisfied by the star graph, $K_{1,m}$.

$$\Delta^+ H$$

$$\Delta^{-}$$

FUTURE WORK

This work was supported by the National Science Foundation under grant numbers DMS-1852378 and DMS-2150299.

GE REMOVALS

 P_n be a **path** graph with *n* vertices. Then $\Delta^{-}H(P_n) = \sum^{n-1} \frac{1}{i},$ $\lfloor \frac{n-2}{2} \rfloor \int \lfloor \frac{n-2}{2} \rfloor + n \mod 2$ $H(P_n) = \sum_{n=1}^{\infty}$ C_n be a **cycle** graph with n vertices. Then ${}^{-}H(C_n) = \Delta^{+}H(C_n) = \sum_{n=1}^{\infty} (1 - \frac{1}{n})$ n-i $K_{p,q}$ be a **complete bipartite** with p,q ver-Then $\Delta^{-}H(K_{p,q}) = \Delta^{+}H(K_{p,q})$ $= \begin{cases} 1 & \text{if } p, q = 1 \\ \frac{1}{2} + \frac{q-1}{2} & \text{if } p = 1, q > 1 \\ \frac{2}{3} & \text{if } p, q \ge 2 \end{cases}$ Let $K_{a_1,a_2,\ldots,a_\ell}$ be a **complete multipartite** with *n* vertices and $\ell \geq 3$, and assume $a_i \leq a_j$ for all i < j. Then $\Delta^{-}H(K_{a_1,a_2,...,a_{\ell}}) = \Delta^{+}H(K_{a_1,a_2,...,a_{\ell}}) = \frac{1}{2}.$

- We are working on proving configurations for the max-max case with $m > {a \choose 2} + {b \choose 2}$ and the maxmin case with $m \ge n$.
- We have also started looking at the maximum and minimum change in the Harary index for edge removals in binary trees.
- Our findings could also be generalized to the change in the Harary index for vertex removals.

ACKNOWLEDGEMENTS