Pell and associated Pell braid sequences as GCDs of sums of k consecutive Pell and balancing-related numbers

Janeè Schrader | Faculty Mentor: ađa Mbirika | External Collaborator: Jürgen Spilker (Emeritus, University of Freiburg, Germany) University of Wisconsin-Eau Claire, Wisconsin

Preliminaries

Definition. The Pell sequence $\left(P_{n}\right)_{n \geq 0}$ and the associated Pell sequence $\left(Q_{n}\right)_{n>0}$ are defined by the recurrence relations $P_{n}=2 P_{n-1}+P_{n-2}$ and $Q_{n}=2 Q_{n-1}+Q_{n-2}$, respectively, with initial conditions $P_{0}=0$ $P_{1}=1, Q_{0}=1$, and $Q_{1}=1$.
Remark. The associated Pell (respectively, Pell) sequence is the sequence of numerators (respectively, denominators) of the rational convergents to the square root of 2 .
Definition. The balancing sequence $\left(B_{n}\right)_{n \geq 0}$ and the cobalancing sequence $\left(b_{n}\right)_{n \geq 0}$ are defined by the recurrence relations $B_{n}=6 B_{n-1}-B_{n-2}$ and $b_{n}=6 b_{n-1}-b_{n-2}+2$, respectively, with initial conditions $B_{0}=0$, $B_{1}=1, b_{0}=0$, and $b_{1}=0$.
Definition. The Lucas-balancing sequence $\left(C_{n}\right)_{n \geq 0}$ and the Lucas-cobalancing sequence $\left(c_{n}\right)_{n \geq 0}$ are defined by the recurrence relations $C_{n}=6 C_{n-1}-C_{n-2}$ and $c_{n}=6 c_{n-1}-c_{n-2}$, respectively, with initial conditions $C_{0}=1, C_{1}=3, c_{0}=-1$, and $c_{1}=1$.

n	0	1	2	3	4	5	6	7	8	9	10
P_{n}	0	1	2	5	12	29	70	169	408	985	2378
Q_{n}	1	1	3	7	17	41	99	239	577	1393	3363
B_{n}	0	1	6	35	204	1189	6930	40391	235416	1372105	7997214
b_{n}	0	0	2	14	84	492	2870	16730	97512	568344	3312554
C_{n}	1	3	17	99	577	3363	19601	114243	665857	3880899	22619537
c_{n}	-1	1	7	41	239	1393	8119	47321	275807	1607521	9369319

Fig. 1: Table of first 11 terms in sequences $\left(P_{n}\right)_{n \geq 0},\left(Q_{n}\right)_{n \geq 0},\left(B_{n}\right)_{n \geq 0}\left(b_{n}\right)_{n \geq 0}\left(C_{n}\right)_{n \geq 0}$, and $\left(c_{n}\right)_{n \geq 0}$

Braid Sequence

A braid sequence arises when we intertwine two sequences. For example in Figure 2, we have the sequence $\left(P_{n}\right)_{n \geq 1}$ in the top row and the associated Pell sequence $\left(Q_{n}\right)_{n \geq 1}$ in the bottom row. The red-dashed path is the sequence $\left(\operatorname{gcd}\left(B_{n}, b_{n}\right)\right)_{n \geq 1}$ and the blue-solid path is the sequence $\left(\operatorname{gcd}\left(B_{n}, b_{n}+1\right)\right)_{n \geq 1}$. Both braid sequences are easily proven by the identities

$$
B_{n}=P_{n} Q_{n}, \quad b_{n}=\left\{\begin{array}{ll}
P_{n} Q_{n-1} & \text { if } n \text { is even, } \\
P_{n-1} Q_{n} & \text { if } n \text { is odd, }
\end{array} \quad b_{n}+1= \begin{cases}P_{n-1} Q_{n} & \text { if } n \text { is even }, \\
P_{n} Q_{n-1} & \text { if } n \text { is odd }\end{cases}\right.
$$

and the facts that $\operatorname{gcd}\left(P_{n-1}, P_{n}\right)=1$ and $\operatorname{gcd}\left(Q_{n-1}, Q_{n}\right)=1$

Fig. 2: The braiding of $\left(P_{n}\right)_{n \geq 1}$ and $\left(Q_{n}\right)_{n \geq 1}$
When $\left(S_{n}\right)_{n \geq 0}$ is any of the six sequences $\left(P_{n}\right)_{n \geq 0},\left(Q_{n}\right)_{n \geq 0},\left(B_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(C_{n}\right)_{n \geq 0}$, or $\left(c_{n}\right)_{n \geq 0}$ mentioned earlier, we establish the following notation for $\mathcal{S}^{m}(k)$, the GCD of all sums of k consecutive $m^{\text {th }}$ powers of sequence terms, in the respective six settings:

$$
\begin{array}{lll}
\mathscr{P}^{m}(k)=\operatorname{gcd}\left\{\left(\sum_{i=1}^{k} P_{n+i}^{m}\right)_{n \geq 0}\right\} & \mathbb{Q}^{m}(k)=\operatorname{gcd}\left\{\left(\sum_{i=1}^{k} Q_{n+i}^{m}\right)_{n \geq 0}\right\} & \mathscr{B}^{m}(k)=\operatorname{gcd}\left\{\left(\sum_{i=1}^{k} B_{n+i}^{m}\right)_{n \geq 0}\right\} \\
\mathrm{a}^{m}(k)=\operatorname{gcd}\left\{\left(\sum_{i=1}^{k} b_{n+i}^{m}\right)_{n \geq 0}\right\} & \mathscr{C}^{m}(k)=\operatorname{gcd}\left\{\left(\sum_{i=1}^{k} C_{n+i}^{m}\right)_{n \geq 0}^{k}\right\} & c^{m}(k)=\operatorname{gcd}\left\{\left(\sum_{i=1}^{k} c_{n+i}^{m}\right)_{n \geq 0}\right\}
\end{array}
$$

New Identities

Theorem 1.1. For $s, r \geq 1$ where s is even, the following identities holds:

$$
P_{s+r}-P_{r}=\left\{\begin{array}{ll}
2 P_{\frac{s}{2}} Q_{\frac{s}{2}+r} & \text { if } s \equiv 0(\bmod 4), \\
2 Q_{\frac{s}{2}} P_{\frac{s}{2}}^{2}+r & \text { ifs } \equiv 2(\bmod 4),
\end{array} \quad Q_{s+r}-Q_{r}= \begin{cases}4 P_{\frac{s}{2}} P_{\frac{s}{2}+r} & \text { if } s \equiv 0(\bmod 4), \\
2 Q_{\frac{s}{2}}^{\frac{s}{2}} Q_{\frac{s}{2}+r} & \text { if } s \equiv 2(\bmod 4) .\end{cases}\right.
$$

Theorem 1.2. For $k \geq 1$, set $\sigma_{S}(k, n):=\sum_{i=1}^{k} S_{n+i}$ where $\left(S_{n}\right)_{n \geq 0}$ is any sequence. Then the following identities holds for the five sequences Pell $\left(P_{n}\right)_{n \geq 0}$, associated Pell $\left(Q_{n}\right)_{n \geq 0}$, balancing $\left(B_{n}\right)_{n \geq 0}$, Lucas-balancing $\left(C_{n}\right)_{n \geq 0}$, and Lucas-cobalancing $\left(c_{n}\right)_{n \geq 0}$:

$$
\begin{gathered}
\sigma_{P}(k, n)=\frac{1}{2}\left(Q_{n+k+1}-Q_{n+1}\right)= \begin{cases}2 P_{\frac{k}{2}} P_{\frac{k}{2}+n+1} & \text { if } k \equiv 0(\bmod 4), \\
Q_{\frac{k}{2}} Q_{\frac{k}{2}+n+1} & \text { if } k \equiv 2(\bmod 4),\end{cases} \\
\sigma_{Q}(k, n)=P_{n+k+1}-P_{n+1}= \begin{cases}2 P_{\frac{k}{2}} Q_{\frac{k}{2}+n+1} & \text { if } k \equiv 0(\bmod 4), \\
2 Q_{\frac{k}{2}} P_{\frac{k}{2}+n+1} & \text { if } k \equiv 2(\bmod 4),\end{cases} \\
\sigma_{B}(k, n)=\frac{1}{4}\left(P_{2 k+2 n+1}-P_{2 n+1}\right)= \begin{cases}\frac{1}{2} P_{k} Q_{k+2 n+1} & \text { if } k \text { is even, } \\
\frac{1}{2} Q_{k} P_{k+2 n+1} & \text { if } k \text { is odd, }\end{cases} \\
\sigma_{C}(k, n)=\frac{1}{2}\left(Q_{2 k+2 n+1}-Q_{2 n+1}\right)= \begin{cases}2 P_{k} P_{k+2 n+1} & \text { if } k \text { is even, } \\
Q_{k} Q_{k+2 n+1} & \text { if } k \text { is odd, },\end{cases} \\
\sigma_{c}(k, n)=\frac{1}{2}\left(Q_{2 k+2 n}-Q_{2 n}\right)= \begin{cases}2 P_{k} P_{k+2 n} & \text { if } k \text { is even, } \\
Q_{k} Q_{k+2 n} & \text { if } k \text { is odd } .\end{cases}
\end{gathered}
$$

Theorem 1.3. For $k \geq 1$, set $\sigma_{b}(k, n):=\sum_{i=1}^{k} b_{n+i}$. Then the following identity holds:

$$
\sigma_{b}(k, n)=\frac{1}{2}\left(B_{k+n}-B_{n}-k\right) .
$$

Observation

Consider $\left(\sum_{i=1}^{k} P_{n+i}\right)_{n \geq 0}$

$P_{2}+P_{3}+P_{4}+P_{5}+P_{6}+P_{7}=287$
$P_{3}+P_{4}+P_{5}+P_{6}+P_{7}+P_{8}=693$
$P_{4}+P_{5}+P_{6}+P_{7}+P_{8}+P_{9}=1673$
$P_{5}+P_{6}+P_{7}+P_{8}+P_{9}+P_{10}=4039$

This pattern goes on for infinitely many sums with all of them being divisible by 7. Furthermore, 7 is the greatest integer that divides all sums. This value is $\mathscr{P}^{1}(6)$. Moreover, $\mathscr{P}^{1}(6)$ equals Q_{3}.

Further observe that the sequence $17,41,99,239,577, \ldots$ is equal to $Q_{4}, Q_{5}, Q_{6}, Q_{7}, Q_{8}, \ldots$ This holds by Identity (1) of Theorem 1.2.

Results for $\left(\mathscr{P}^{1}(k)\right)_{k \geq 1}$ and $\left(\mathbb{Q}^{1}(k)\right)_{k \geq 1}$

These are the braids for braid sequences $\left(\mathscr{P}^{1}(k)\right)_{k \geq 1}$ in blue and $\left(\mathbb{Q}^{1}(k)\right)_{k \geq 1}$ in dashed red.

Theorem 1.4. For all $k \geq 1$, we have

$$
\mathscr{P}^{1}(k)=\left\{\begin{array}{ll}
2 P_{\frac{k}{2}} & \text { if } k \equiv 0(\bmod 4), \\
Q_{\frac{k}{2}} & \text { if } k \equiv 2(\bmod 4), \\
1 & \text { if } k \equiv 1,3(\bmod 4),
\end{array} \quad Q^{1}(k)= \begin{cases}2 P_{\frac{k}{2}} & \text { if } k \equiv 0(\bmod 4), \\
2 Q_{\frac{k}{2}} & \text { if } k \equiv 2(\bmod 4), \\
1 & \text { if } k \equiv 1,3(\bmod 4) .\end{cases}\right.
$$

Results for $\left(\mathscr{B}^{1}(k)\right)_{k \geq 1}$ and $\left(\mathscr{C}^{1}(k)\right)_{k \geq 1}$
These are the braids for braid sequences $\left(\mathscr{B}^{1}(k)\right)_{k \geq 1}$ in blue and $\left(Q^{1}(k)\right)_{k \geq 1}$ in dashed red.

Theorem 1.5. For all $k \geq 1$, we have

$$
\mathscr{B}^{1}(k)=\left\{\begin{array}{ll}
\frac{1}{2} P_{k} & \text { if } k \text { is even, } \\
Q_{k} & \text { if } k \text { is odd, }
\end{array} \quad \theta^{1}(k)= \begin{cases}\operatorname{gcd}\left(P_{k}, k\right) & \text { if } k \text { is even }, \\
2 \operatorname{gcd}\left(Q_{k}, k\right) & \text { if } k \text { is odd } .\end{cases}\right.
$$

Results for $\left(\mathscr{C}^{1}(k)\right)_{k \geq 1}$ and $\left(\boldsymbol{c}^{1}(k)\right)_{k \geq 1}$

These are the braids for braid sequences $\left(\mathscr{C}^{1}(k)\right)_{k \geq 1}$ in blue and $\left(c^{1}(k)\right)_{k \geq 1}$ in dashed red.

Theorem 1.6. For all $k \geq 1$, we have

$$
\mathscr{C}^{1}(k)=\left\{\begin{array}{ll}
2 P_{k} & \text { if } k \text { is even, } \\
Q_{k} & \text { if } k \text { is odd, }
\end{array} \quad c^{1}(k)= \begin{cases}4 P_{k} & \text { if } k \text { is even }, \\
Q_{k} & \text { if } k \text { is odd } .\end{cases}\right.
$$

Future Research

1. Complete $\delta^{2}(k)$ for all 6 sequences
2. Find the closed forms for the values $\operatorname{gcd}\left(S_{k}, k\right)$ for 2. Determine $\delta^{m}(k)$ where $m>2$ for all 6 sequences all 6 sequences.

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37 (1999), no. 2, 98-105.
[2] D. Guyer and a. Mbirika, GCD of sums of k consecutive Fibonacci, Lucas, and generalized Fibonacci numbers, J. Integer Seq. 24 (2021), no. 9, Article 21.9.8, 25 pp.
[3] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, 2014.
[4] a. Mbirika and J. Spilker, GCD of sums of k consecutive squares of generalized Fibonacci numbers, Fibonacci Quart. 60 (2022), no. 5, 255-269.

