

Pell and associated Pell braid sequences as GCDs of sums of k consecutive Pell and balancing-related numbers

Janeè Schrader | Faculty Mentor: alla Mbirika | External Collaborator: Jürgen Spilker (Emeritus, University of Freiburg, Germany) University of Wisconsin-Eau Claire, Wisconsin

Preliminaries

Definition. The **Pell sequence** $(P_n)_{n\geq 0}$ and the **associated Pell sequence** $(Q_n)_{n>0}$ are defined by the recurrence relations $P_n = 2P_{n-1} + P_{n-2}$ and $Q_n = 2Q_{n-1} + Q_{n-2}$, respectively, with initial conditions $P_0 = 0$, $P_1 = 1, Q_0 = 1, \text{ and } Q_1 = 1.$

Remark. The associated Pell (respectively, Pell) sequence is the sequence of numerators (respectively, denominators) of the rational convergents to the square root of 2.

Definition. The balancing sequence $(B_n)_{n>0}$ and the cobalancing sequence $(b_n)_{n>0}$ are defined by the recurrence relations $B_n = 6B_{n-1} - B_{n-2}$ and $b_n = 6b_{n-1} - b_{n-2} + 2$, respectively, with initial conditions $B_0 = 0$, $B_1 = 1$, $b_0 = 0$, and $b_1 = 0$.

Definition. The Lucas-balancing sequence $(C_n)_{n>0}$ and the Lucas-cobalancing sequence $(c_n)_{n>0}$ are defined by the recurrence relations $C_n = 6C_{n-1} - C_{n-2}$ and $c_n = 6c_{n-1} - c_{n-2}$, respectively, with initial conditions $C_0 = 1$, $C_1 = 3$, $c_0 = -1$, and $c_1 = 1$.

n	0	1	2	3	4	5	6	7	8	9	10
P_n	0	1	2	5	12	29	70	169	408	985	2378
Q_n	1	1	3	7	17	41	99	239	577	1393	3363
B _n	0	1	6	35	204	1189	6930	40391	235416	1372105	7997214
b_n	0	0	2	14	84	492	2870	16730	97512	568344	3312554
C_n	1	3	17	99	577	3363	19601	114243	665857	3880899	22619537
Cn	-1	1	7	41	239	1393	8119	47321	275807	1607521	9369319

Observation

(k)	Look!
Consider $\left(\sum_{i=1}^{k} P_{n+i}\right)_{n\geq 0}$ when $k = 6$. Then we have	$7 \cdot 17 = 119$
$\left(\sum_{i=1}^{n} \frac{n+i}{n}\right)_{n>0}$	$7 \cdot 41 = 287$
	$7 \cdot 99 = 693$
$P_1 + P_2 + P_3 + P_4 + P_5 + P_6 = 119$	$7 \cdot 239 = 1673$
$P_2 + P_3 + P_4 + P_5 + P_6 + P_7 = 287$	$7 \cdot 577 = 4039$
$P_3 + P_4 + P_5 + P_6 + P_7 + P_8 = 693$	
$P_4 + P_5 + P_6 + P_7 + P_8 + P_9 = 1673$	
$P_5 + P_6 + P_7 + P_8 + P_9 + P_{10} = 4039$	

This pattern goes on for infinitely many sums with all of them being divisible by 7. Furthermore, 7 is the greatest integer that divides all sums. This value is $\mathcal{P}^1(6)$. Moreover, $\mathcal{P}^1(6)$ equals Q_3 .

Further observe that the sequence $17, 41, 99, 239, 577, \ldots$ is equal to $Q_4, Q_5, Q_6, Q_7, Q_8, \ldots$ This holds by Identity (1) of Theorem 1.2.

Fig. 1: Table of first 11 terms in sequences $(P_n)_{n\geq 0}$, $(Q_n)_{n\geq 0}$, $(B_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(C_n)_{n\geq 0}$, and $(c_n)_{n\geq 0}$

Braid Sequence

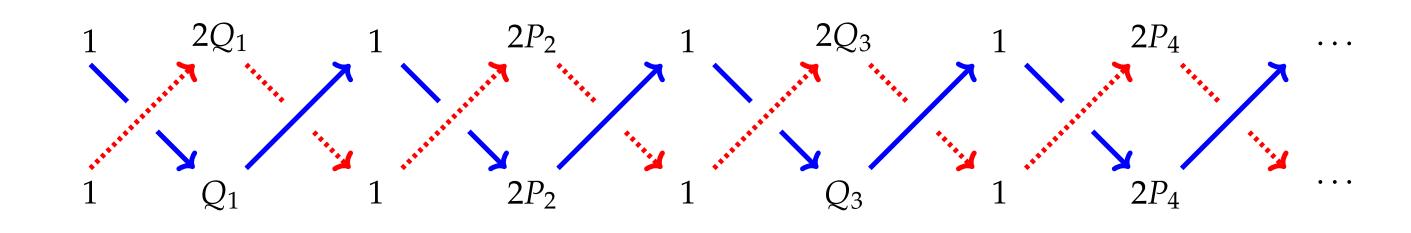
A braid sequence arises when we intertwine two sequences. For example in Figure 2, we have the sequence $(P_n)_{n\geq 1}$ in the top row and the associated Pell sequence $(Q_n)_{n\geq 1}$ in the bottom row. The red-dashed path is the sequence $(\text{gcd}(B_n, b_n))_{n>1}$ and the blue-solid path is the sequence $(\text{gcd}(B_n, b_n + 1))_{n>1}$. Both braid sequences are easily proven by the identities

$$B_n = P_n Q_n, \quad b_n = \begin{cases} P_n Q_{n-1} & \text{if } n \text{ is even,} \\ P_{n-1} Q_n & \text{if } n \text{ is odd,} \end{cases} \quad b_n + 1 = \begin{cases} P_{n-1} Q_n & \text{if } n \text{ is even,} \\ P_n Q_{n-1} & \text{if } n \text{ is odd,} \end{cases}$$

and the facts that $gcd(P_{n-1}, P_n) = 1$ and $gcd(Q_{n-1}, Q_n) = 1$

Results for $(\mathcal{P}^1(k))_{k>1}$ and $(\mathbb{Q}^1(k))_{k>1}$

These are the braids for braid sequences $(\mathcal{P}^1(k))_{k>1}$ in blue and $(\mathbb{Q}^1(k))_{k\geq 1}$ in dashed red.



Theorem 1.4. For all $k \ge 1$, we have

	$\left(2P_{\frac{k}{2}}\right)$	$if k \equiv 0 \pmod{4},$		$\left(2P_{\frac{k}{2}}\right)$	$if k \equiv 0 \pmod{4},$ $if k \equiv 2 \pmod{4},$ $if k \equiv 1, 3 \pmod{4}.$
$\mathcal{P}^1(k) =$	$\left\{Q_{\frac{k}{2}}\right\}$	$if k \equiv 0 \pmod{4},$ $if k \equiv 2 \pmod{4},$	$\mathbb{Q}^1(k) = \cdot$	$2Q_{\frac{k}{2}}$	if $k \equiv 2 \pmod{4}$,
		if $k \equiv 1, 3 \pmod{4}$,		(1	if $k \equiv 1, 3 \pmod{4}$.

Results for $(\mathcal{B}^1(k))_{k\geq 1}$ and $(\mathcal{C}^1(k))_{k\geq 1}$

These are the braids for braid sequences $(\mathfrak{B}^1(k))_{k>1}$ in blue and $(\mathfrak{C}^1(k))_{k>1}$ in dashed red.

 $Q_5 = 2 \gcd(Q_6, 6) = Q_7$ $Q_1 \ 2 \gcd(Q_2, 2)$ $2 \operatorname{gcd}(Q_4, 4)$ $2 \operatorname{gcd}(Q_8, 8)$ Q_3

Fig. 2: The braiding of $(P_n)_{n>1}$ and $(Q_n)_{n>1}$

When $(S_n)_{n>0}$ is any of the six sequences $(P_n)_{n\geq 0}$, $(Q_n)_{n\geq 0}$, $(B_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(C_n)_{n\geq 0}$, or $(c_n)_{n\geq 0}$ mentioned earlier, we establish the following notation for $\mathcal{S}^m(k)$, the GCD of all sums of k consecutive m^{th} powers of sequence terms, in the respective six settings:

$$\mathcal{P}^{m}(k) = \gcd\left\{\left(\sum_{i=1}^{k} P_{n+i}^{m}\right)_{n \ge 0}\right\} \qquad \mathbb{Q}^{m}(k) = \gcd\left\{\left(\sum_{i=1}^{k} Q_{n+i}^{m}\right)_{n \ge 0}\right\} \qquad \mathcal{P}^{m}(k) = \gcd\left\{\left(\sum_{i=1}^{k} B_{n+i}^{m}\right)_{n \ge 0}\right\} \qquad \mathcal{P}^{m}(k) = \operatorname{gcd}\left\{\left(\sum_{i=1}^{k} B_{n+i}$$

New Identities

Theorem 1.1. For $s, r \ge 1$ where s is even, the following identities holds:

 $P_{s+r} - P_r = \begin{cases} 2P_{\frac{s}{2}}Q_{\frac{s}{2}+r} & \text{if } s \equiv 0 \pmod{4}, \\ 2Q_{\frac{s}{2}}P_{\frac{s}{2}+r} & \text{if } s \equiv 2 \pmod{4}, \end{cases} \qquad \qquad Q_{s+r} - Q_r = \begin{cases} 4P_{\frac{s}{2}}P_{\frac{s}{2}+r} & \text{if } s \equiv 0 \pmod{4}, \\ 2Q_{\frac{s}{2}}Q_{\frac{s}{2}+r} & \text{if } s \equiv 2 \pmod{4}. \end{cases}$ **Theorem 1.2.** For $k \ge 1$, set $\sigma_S(k, n) := \sum_{i=1}^{n} S_{n+i}$ where $(S_n)_{n\ge 0}$ is any sequence. Then the following identities holds for the five sequences Pell $(P_n)_{n\geq 0}$, associated Pell $(Q_n)_{n\geq 0}$, balancing $(B_n)_{n\geq 0}$, Lucas-balancing $(C_n)_{n\geq 0}$, and *Lucas-cobalancing* $(c_n)_{n \ge 0}$:

$$\sigma_P(k,n) = \frac{1}{2}(Q_{n+k+1} - Q_{n+1}) = \begin{cases} 2P_{\frac{k}{2}}P_{\frac{k}{2}+n+1} & \text{if } k \equiv 0 \pmod{4}, \\ Q_{\frac{k}{2}}Q_{\frac{k}{2}+n+1} & \text{if } k \equiv 2 \pmod{4}, \end{cases}$$

 $gcd(P_1,1) = \frac{1}{2}P_2 \quad gcd(P_3,3) = \frac{1}{2}P_4 \quad gcd(P_5,5) = \frac{1}{2}P_6$

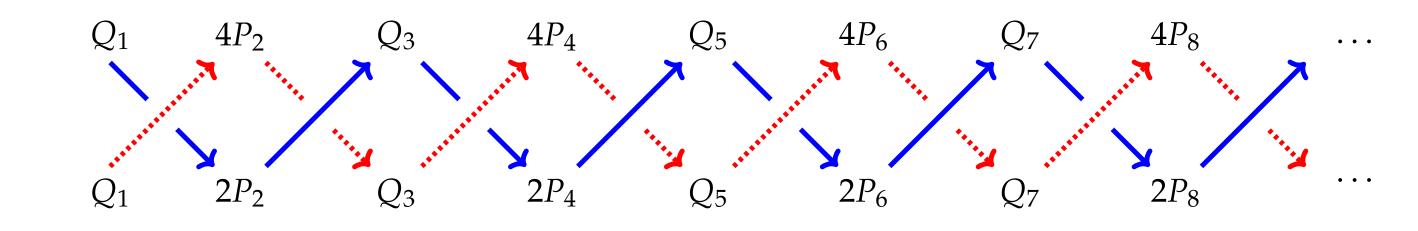
Theorem 1.5. For all $k \ge 1$, we have

$$\mathcal{B}^{1}(k) = \begin{cases} \frac{1}{2}P_{k} & \text{if } k \text{ is even,} \\ Q_{k} & \text{if } k \text{ is odd,} \end{cases}$$

$$\mathcal{C}^{1}(k) = \begin{cases} \gcd(P_{k}, k) & \text{if } k \text{ is even}, \\ 2 \gcd(Q_{k}, k) & \text{if } k \text{ is odd}. \end{cases}$$

Results for $(\mathscr{C}^{1}(k))_{k\geq 1}$ and $(c^{1}(k))_{k\geq 1}$

These are the braids for braid sequences $(\mathscr{C}^1(k))_{k>1}$ in blue and $(c^1(k))_{k>1}$ in dashed red.



Theorem 1.6. For all $k \ge 1$, we have

$$\mathscr{C}^{1}(k) = \begin{cases} 2P_{k} & \text{if } k \text{ is even,} \\ Q_{k} & \text{if } k \text{ is odd,} \end{cases} \qquad c^{1}(k) = \begin{cases} 4P_{k} & \text{if } k \text{ is even,} \\ Q_{k} & \text{if } k \text{ is odd.} \end{cases}$$

$$\sigma_Q(k,n) = P_{n+k+1} - P_{n+1} = \begin{cases} 2P_{\frac{k}{2}}Q_{\frac{k}{2}+n+1} & \text{if } k \equiv 0 \pmod{4}, \\ 2Q_{\frac{k}{2}}P_{\frac{k}{2}+n+1} & \text{if } k \equiv 2 \pmod{4}, \end{cases}$$

$$\sigma_B(k,n) = \frac{1}{4} \left(P_{2k+2n+1} - P_{2n+1} \right) = \begin{cases} \frac{1}{2} P_k Q_{k+2n+1} & \text{if } k \text{ is even,} \\ \frac{1}{2} Q_k P_{k+2n+1} & \text{if } k \text{ is odd,} \end{cases}$$

$$\sigma_{C}(k,n) = \frac{1}{2} (Q_{2k+2n+1} - Q_{2n+1}) = \begin{cases} 2P_{k}P_{k+2n+1} & \text{if } k \text{ is even,} \\ Q_{k}Q_{k+2n+1} & \text{if } k \text{ is odd,} \end{cases}$$

$$\sigma_{c}(k,n) = \frac{1}{2}(Q_{2k+2n} - Q_{2n}) = \begin{cases} 2P_{k}P_{k+2n} & \text{if } k \text{ is even,} \\ Q_{k}Q_{k+2n} & \text{if } k \text{ is odd.} \end{cases}$$

Theorem 1.3. For $k \ge 1$, set $\sigma_b(k, n) := \sum_{i=1}^{n} b_{n+i}$. Then the following identity holds:

$$\sigma_b(k,n) = \frac{1}{2}(B_{k+n} - B_n - k).$$

Future Research

(1)

(2)

(3)

(4)

(5)

(6)

1. Complete $S^2(k)$ for all 6 sequences. 2. Determine $S^m(k)$ where m > 2 for all 6 sequences.

3. Find the closed forms for the values $gcd(S_k, k)$ for all 6 sequences.

References

- [1] A. Behera and G. K. Panda, On the square roots of triangular numbers, *Fibonacci Quart.* 37 (1999), no. 2, 98–105.
- [2] D. Guyer and a. Mbirika, GCD of sums of *k* consecutive Fibonacci, Lucas, and generalized Fibonacci numbers, J. Integer Seq. 24 (2021), no. 9, Article 21.9.8, 25 pp.
- [3] T. Koshy, *Pell and Pell-Lucas Numbers with Applications*, Springer, 2014.
- [4] a. Mbirika and J. Spilker, GCD of sums of k consecutive squares of generalized Fibonacci numbers, *Fibonacci Quart.* **60** (2022), no. 5, 255–269.

Acknowledgements: We would like to thank the UW-Eau Claire mathematics department and the UW-Eau Claire Office of Research and Sponsored Programs.