Investigations of Hierarchical Temporal Memory

Ezra Aylaian

Maritime Force Engagement Control Group
Air and Missile Defense Sector
Johns Hopkins University Applied Physics Laboratory

Department of Mathematics
University of Maryland

Joint work with Thomas Corcoran and Samim Manizade

Nebraska Conference for Undergraduate Women in Mathematics
January 21st, 2023
Table of Contents

1. The Scenario
2. Hierarchical Temporal Memory
3. Evaluation
4. Experimental Results
Raid 1: Benign

How can we detect a sudden change in tactics?
Raid 1: Benign

Raid 6: Benign

How can we detect a sudden change in tactics?
Raid 1: Benign

\[\vdots \]

Raid 6: Benign

Raid 7: Anomalous

How can we detect a sudden change in tactics?
Raid 1: Benign

Raid 6: Benign

Raid 7: Anomalous

How can we detect a sudden change in tactics?
Table of Contents

1. The Scenario
2. Hierarchical Temporal Memory
3. Evaluation
4. Experimental Results
Definition: Boolean Algebra

A boolean algebra is a set B along with binary operations \wedge and \vee and unary operation \neg such that:

1. \wedge and \vee are associative, commutative, and distribute over each other,
2. $a \vee (a \wedge b) = a$ and $a \wedge (a \vee b) = a$,
3. $\exists 0, 1 \in B$ such that $a \vee 0 = a$ and $a \wedge 1 = a$,
4. $a \vee \neg a = 1$ and $a \wedge \neg a = 0$.

A homomorphism of Boolean algebras is a map $f: B \rightarrow B'$ such that:

- $f(a \wedge b) = f(a) \wedge f(b)$,
- $f(a \vee b) = f(a) \vee f(b)$,
- $f(0) = 0$,
- $f(1) = 1$.

Boolean algebras with Boolean homomorphisms form a category.
Boolean Algebras

Definition: Boolean Algebra

A boolean algebra is a set B along with binary operations \land and \lor and unary operation \neg such that:

- \land and \lor are associative, commutative, and distribute over each other,
- $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$,
- $\exists 0, 1 \in B$ such that $a \lor 0 = a$ and $a \land 1 = a$,
- $a \lor \neg a = 1$ and $a \land \neg a = 0$.

A homomorphism of Boolean algebras is a map $f : B \to B'$ such that

$$f(a \land b) = f(a) \land f(b), \quad f(a \lor b) = f(a) \lor f(b), \quad f(0) = 0, \quad f(1) = 1.$$

Boolean algebras with Boolean homomorphisms form a category.
Boolean Algebras

Example

The two-element Boolean algebra has 0 and 1 as its only elements. We interpret 0 as false, 1 as true, and \land, \lor, and \neg as and, or, and not.
Boolean Algebras

Example
The two-element Boolean algebra has 0 and 1 as its only elements. We interpret 0 as false, 1 as true, and \land, \lor, and \neg as and, or, and not.

Definition: Direct Product
Given Boolean algebras $\{B_\alpha\}_{\alpha \in \mathcal{A}}$, we define the direct product $\prod_{\alpha \in \mathcal{A}} B_\alpha$ to be the Boolean algebra with the Cartesian product as the underlying set and with operations defined componentwise.

In the HTM terminology, if $w \ll n$, then elements of B_n^w are called Sparse Distributed Representations (SDRs) of size n and sparsity w/n.
Boolean Algebras

Example

The two-element Boolean algebra has 0 and 1 as its only elements. We interpret 0 as false, 1 as true, and \land, \lor, and \neg as and, or, and not.

Definition: Direct Product

Given Boolean algebras $\{B_\alpha\}_{\alpha \in A}$, we define the direct product $\prod_{\alpha \in A} B_\alpha$ to be the Boolean algebra with the Cartesian product as the underlying set and with operations defined componentwise.

For the rest of the talk, let B be the two-element Boolean algebra. Elements of the direct product $B^n := \prod_{i=1}^n B$ can be classified by how many of their components have ones. Specifically, let B^n_w be elements of B^n with w ones, then $B^n = \bigsqcup_{w=0}^n B^n_w$.
Boolean Algebras

Example
The two-element Boolean algebra has 0 and 1 as its only elements. We interpret 0 as false, 1 as true, and \(\land, \lor, \text{ and } \lnot \) as and, or, and not.

Definition: Direct Product
Given Boolean algebras \(\{B_{\alpha}\}_{\alpha \in A} \), we define the direct product \(\prod_{\alpha \in A} B_{\alpha} \) to be the Boolean algebra with the Cartesian product as the underlying set and with operations defined componentwise.

For the rest of the talk, let \(B \) be the two-element Boolean algebra. Elements of the direct product \(B^n := \prod_{i=1}^{n} B \) can be classified by how many of their components have ones. Specifically, let \(B^n_w \) be elements of \(B^n \) with \(w \) ones, then \(B^n = \bigsqcup_{w=0}^{n} B^n_w \). In the HTM terminology, if \(w \ll n \), then elements of \(B^n_w \) are called **Sparse Distributed Representations** (SDRs) of size \(n \) and sparsity \(w/n \).
What is Hierarchical Temporal Memory (HTM)?

- HTM is a recent biologically-plausible alternative to neural networks created by Numenta based on a series of conjectures about the structure of the neocortex (the Thousand Brains Theory).

![Diagram of HTM components: encoder, spatial pooler, temporal memory, anomaly likelihood, SDR.](diagram.png)
What is Hierarchical Temporal Memory (HTM)?

- HTM is a recent biologically-plausible alternative to neural networks created by Numenta based on a series of conjectures about the structure of the neocortex (the Thousand Brains Theory).
- HTM can learn online, which means that it learns the scenario and generates results in real time with no prior training.
What is Hierarchical Temporal Memory (HTM)?

- HTM is a recent biologically-plausible alternative to neural networks created by Numenta based on a series of conjectures about the structure of the neocortex (the Thousand Brains Theory).
- HTM can learn online, which means that it learns the scenario and generates results in real time with no prior training.

The encoder maps the input space into B^n in a way that preserves semantic structure. The Spatial Pooler (SP) learns to represent the encoded SDR at a fixed sparsity while preserving semantic structure. The Temporal Memory (TM) learns to predict which components will be ones in the next SP output given the previous SP outputs and gives an anomaly score based on how unaccurate it was.
Question: How should we assess how useful HTM is?
Methodology

Question: How should we assess how useful HTM is?
Properties that we want HTM to have:
Methodology

Question: How should we assess how useful HTM is?

Properties that we want HTM to have:

1. **Noise resilience**: the ability to operate effectively on noisy data
Question: How should we assess how useful HTM is?

Properties that we want HTM to have:

1. **Noise resilience**: the ability to operate effectively on noisy data
2. **Selective attention**: the ability to ignore irrelevant data
Question: How should we assess how useful HTM is?

Properties that we want HTM to have:

1. **Noise resilience**: the ability to operate effectively on noisy data
2. **Selective attention**: the ability to ignore irrelevant data
3. **Studiousness**: the utility of the paradigmatic particularities of the learning algorithms
Methodology

Question: How should we assess how useful HTM is?

Properties that we want HTM to have:

1. **Noise resilience**: the ability to operate effectively on noisy data
2. **Selective attention**: the ability to ignore irrelevant data
3. **Studiousness**: the utility of the paradigmatic particularities of the learning algorithms
4. **Ease-of-use and readiness**: the ability to be easily operationalized
Methodology

Question: How should we assess how useful HTM is?

Properties that we want HTM to have:

1. **Noise resilience**: the ability to operate effectively on noisy data
2. **Selective attention**: the ability to ignore irrelevant data
3. **Studiousness**: the utility of the paradigmatic particularities of the learning algorithms
4. **Ease-of-use and readiness**: the ability to be easily operationalized
5. **Experimental plausibility**: the ability to perform well on a simple experiment
The ability to operate effectively on noisy data

To test the noise resilience of HTM’s spatial pooler, we used well-known MNIST digit classification problem, which contains 60,000 handwritten grayscale 28x28 images of digits for training and 10,000 for testing [4]. Noise was added to the digits as follows:

```python
# image is a numpy array, noise_level is an integer
def add_noise(image, noise_level):
    noise = np.random.normal(scale=noise_level, size=(28,28))
    return np.clip(np.abs(image + noise), 0, 255)
```

Figure 1: A handwritten MNIST digit with noise levels 0, 20, 40, 60, ..., 220.
Selective Attention

The ability to operate effectively in the presence of irrelevant data

Figure 2: A handwritten MNIST digit with 0, 7, 14, 21, and 28 noisy, black, and white irrelevant columns added.

Ability of the Spatial Pooler to correctly classify MNIST digits in the presence of irrelevant columns

- Noisy columns added
- Black columns added
- White columns added

Probability of correct classification vs. Number of irrelevant columns (28 columns are relevant)
Table of Contents

1. The Scenario
2. Hierarchical Temporal Memory
3. Evaluation
4. Experimental Results
Each missile’s position is encoded as an SDR. The missile SDRs are \lor ed together to get the scenario SDR.

$$
\text{lat: 38.99934} \quad \text{lon: -72.73780} \\
\lor \\
\text{lat: 39.19934} \quad \text{lon: -72.73777} \\
\lor \\
\text{lat: 39.39934} \quad \text{lon: -72.73773} \\
\lor
$$

We run the scenario SDRs through the HTM pipeline to get an anomaly probability associated with each timestep. Success is achieved if the anomaly probability spikes when the anomalous raid begins.
Each missile’s position is encoded as an SDR.

- Raid 1: Benign
- Raid 6: Benign
- Raid 7: Anomalous

The missile SDRs are \lored together to get the scenario SDR. We run the scenario SDRs through the HTM pipeline to get an anomaly probability associated with each timestep. Success is achieved if the anomaly probability spikes when the anomalous raid begins.
• Each missile’s position is encoded as an SDR. The missile SDRs are \lored together to get the scenario SDR.

\begin{align*}
\text{lat: } 38.99934 & & \text{lat: } 39.19934 & & \text{lat: } 39.39934 \\
\text{lon: } -72.73780 & & \text{lon: } -72.73777 & & \text{lon: } -72.73773
\end{align*}

We run the scenario SDRs through the HTM pipeline to get an anomaly probability associated with each timestep. Success is achieved if the anomaly probability spikes when the anomalous raid begins.
- Each missile’s position is encoded as an SDR. The missile SDRs are \lored together to get the scenario SDR.

- We run the scenario SDRs through the HTM pipeline to get an anomaly probability associated with each timestep.
• Each missile’s position is encoded as an SDR. The missile SDRs are \lor ed together to get the scenario SDR.

\[
\begin{align*}
\text{lat: } & 38.99934 & \text{lat: } & 39.19934 & \text{lat: } & 39.39934 \\
\text{lon: } & -72.73780 & \text{lon: } & -72.73777 & \text{lon: } & -72.73773
\end{align*}
\]

\[
\lor \lor \lor = \text{scenario SDR}
\]

• We run the scenario SDRs through the HTM pipeline to get an anomaly probability associated with each timestep.

• Success is achieved if the anomaly probability spikes when the anomalous raid begins.
Results Without Hyperparameter Optimization

![Anomaly History Graph]

- Green line: Anomaly prob
- Black line: New raid
- Red line: Anomaly occurs
Results With Hyperparameter Optimization

Anomaly History

- Anomaly prob
- New raid
- Anomaly occurs

Timestep

Anomalousness
Summary

How useful is HTM?

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective? Not great
3. Studious? Yes, features online learning
4. Ready to operationalize? No, low TRL
5. Experimentally plausible? Performed decently well in a very simple scenario
Summary

How useful is HTM? Is HTM...

1. Noise resilient?

Yes, when trained on noisy data

Not great

Yes, features online learning

No, low TRL

Performed decently well in a very simple scenario
How useful is HTM? Is HTM...

1 Noise resilient? Yes, when trained on noisy data
How useful is HTM? Is HTM...

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective?
How useful is HTM? Is HTM...

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective? Not great
Summary

How useful is HTM? Is HTM...

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective? Not great
3. Studious?
Summary

How useful is HTM? Is HTM...

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective? Not great
3. Studious? Yes, features online learning
Summary

How useful is HTM? Is HTM...

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective? Not great
3. Studious? Yes, features online learning
4. Ready to operationalize? No, low TRL
Summary

How useful is HTM? Is HTM...

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective? Not great
3. Studious? Yes, features online learning
4. Ready to operationalize? No, low TRL
How useful is HTM? Is HTM...

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective? Not great
3. Studious? Yes, features online learning
4. Ready to operationalize? No, low TRL
5. Experimentally plausible?
Summary

How useful is HTM? Is HTM...

1. Noise resilient? Yes, when trained on noisy data
2. Attention selective? Not great
3. Studious? Yes, features online learning
4. Ready to operationalize? No, low TRL
5. Experimentally plausible? Performed decently well in a very simple scenario