Investigations of Hierarchical Temporal Memory

Ezra Aylaian

Maritime Force Engagement Control Group Air and Missile Defense Sector Johns Hopkins University Applied Physics Laboratory

> Department of Mathematics University of Maryland

Joint work with Thomas Corcoran and Samim Manizade

Nebraska Conference for Undergraduate Women in Mathematics January 21st, 2023

Table of Contents

- The Scenario
- 2 Hierarchical Temporal Memory
- 3 Evaluation
- Experimental Results

Raid 1: Benign

Raid 1: Benign

:

Raid 6: Benign

Raid 1: Benign

÷

Raid 6: Benign

Raid 7: Anomalous

Raid 1: Benign

Raid 6: Benign

Raid 7: Anomalous

How can we detect a sudden change in tactics?

Table of Contents

- 1 The Scenario
- 2 Hierarchical Temporal Memory
- 3 Evaluation
- Experimental Results

Definition: Boolean Algebra

A boolean algebra is a set B along with binary operations \land and \lor and unary operation \neg such that:

- ◆ and ∨ are associative, commutative, and distribute over each other,
- $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$,
- $\exists 0, 1 \in B$ such that $a \lor 0 = a$ and $a \land 1 = a$,
- \bullet $a \lor \neg a = 1$ and $a \land \neg a = 0$.

Definition: Boolean Algebra

A boolean algebra is a set *B* along with binary operations \land and \lor and unary operation \neg such that:

- ◆ and ∨ are associative, commutative, and distribute over each other,
- ullet $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$,
- $\exists 0, 1 \in \mathbf{B}$ such that $\mathbf{a} \lor 0 = \mathbf{a}$ and $\mathbf{a} \land 1 = \mathbf{a}$,
- $a \lor \neg a = 1$ and $a \land \neg a = 0$.

A homomorphism of Boolean algebras is a map $f: B \to B'$ such that

$$f(a \wedge b) = f(a) \wedge f(b), \ f(a \vee b) = f(a) \vee f(b), \ f(0) = 0, \ f(1) = 1.$$

Boolean algebras with Boolean homomorphisms form a category.

Example

The two-element Boolean algebra has 0 and 1 as its only elements. We interpret 0 as false, 1 as true, and \land , \lor , and \neg as and, or, and not.

Example

The two-element Boolean algebra has 0 and 1 as its only elements. We interpret 0 as false, 1 as true, and \land , \lor , and \neg as and, or, and not.

Definition: Direct Product

Given Boolean algebras $\{B_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, we define the direct product $\prod_{{\alpha}\in\mathcal{A}}B_{\alpha}$ to be the Boolean algebra with the Cartesian product as the underlying set and with operations defined componentwise.

Example

The two-element Boolean algebra has 0 and 1 as its only elements. We interpret 0 as false, 1 as true, and \land , \lor , and \neg as and, or, and not.

Definition: Direct Product

Given Boolean algebras $\{B_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, we define the direct product $\prod_{{\alpha}\in\mathcal{A}}B_{\alpha}$ to be the Boolean algebra with the Cartesian product as the underlying set and with operations defined componentwise.

For the rest of the talk, let B be the two-element Boolean algebra. Elements of the direct product $B^n := \prod_{i=1}^n B$ can be classified by how many of their components have ones. Specifically, let B^n_w be elements of B^n with w ones, then $B^n = \coprod_{w=0}^n B^n_w$.

Example

The two-element Boolean algebra has 0 and 1 as its only elements. We interpret 0 as false, 1 as true, and \land , \lor , and \neg as and, or, and not.

Definition: Direct Product

Given Boolean algebras $\{B_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, we define the direct product $\prod_{{\alpha}\in\mathcal{A}}B_{\alpha}$ to be the Boolean algebra with the Cartesian product as the underlying set and with operations defined componentwise.

For the rest of the talk, let B be the two-element Boolean algebra. Elements of the direct product $B^n := \prod_{i=1}^n B$ can be classified by how many of their components have ones. Specifically, let B^n_w be elements of B^n with w ones, then $B^n = \coprod_{w=0}^n B^n_w$. In the HTM terminology, if $w \ll n$, then elements of B^n_w are called **Sparse Distributed Representations (SDRs)** of size n and sparsity w/n.

What is Hierarchical Temporal Memory (HTM)?

 HTM is a recent biologically-plausible alternative to neural networks created by Numenta based on a series of conjectures about the structure of the neocortex (the Thousand Brains Theory).

What is Hierarchical Temporal Memory (HTM)?

- HTM is a recent biologically-plausible alternative to neural networks created by Numenta based on a series of conjectures about the structure of the neocortex (the Thousand Brains Theory).
- HTM can learn online, which means that it learns the scenario and generates results in real time with no prior training.

What is Hierarchical Temporal Memory (HTM)?

- HTM is a recent biologically-plausible alternative to neural networks created by Numenta based on a series of conjectures about the structure of the neocortex (the Thousand Brains Theory).
- HTM can learn online, which means that it learns the scenario and generates results in real time with no prior training.

• The encoder maps the input space into Bⁿ in a way that preserves semantic structure. The Spatial Pooler (SP) learns to represent the encoded SDR at a fixed sparsity while preserving semantic structure. The Temporal Memory (TM) learns to predict which components will be ones in the next SP output given the previous SP outputs and gives an anomaly score based on how unaccurate it was.

Table of Contents

- 1 The Scenario
- 2 Hierarchical Temporal Memory
- 3 Evaluation
- Experimental Results

Question: How should we assess how useful HTM is?

Question: How should we assess how useful HTM is?

Question: How should we assess how useful HTM is?

Properties that we want HTM to have:

Noise resilience: the ability to operate effectively on noisy data

Question: How should we assess how useful HTM is?

Properties that we want HTM to have:

Noise resilience: the ability to operate effectively on noisy data

Selective attention: the ability to ignore irrelevant data

Question: How should we assess how useful HTM is?

- Noise resilience: the ability to operate effectively on noisy data
- Selective attention: the ability to ignore irrelevant data
- Studiousness: the utility of the paradigmal particularities of the learning algorithms

Question: How should we assess how useful HTM is?

- Noise resilience: the ability to operate effectively on noisy data
- Selective attention: the ability to ignore irrelevant data
- Studiousness: the utility of the paradigmal particularities of the learning algorithms
- Ease-of-use and readiness: the ability to be easily operationalized

Question: How should we assess how useful HTM is?

- Noise resilience: the ability to operate effectively on noisy data
- Selective attention: the ability to ignore irrelevant data
- Studiousness: the utility of the paradigmal particularities of the learning algorithms
- Ease-of-use and readiness: the ability to be easily operationalized
- **Solution Experimental plausibility:** the ability to perform well on a simple experiment

Noise Resilience

The ability to operate effectively on noisy data

To test the noise resilience of HTM's spatial pooler, we used well-known MNIST digit classification problem, which contains 60,000 handwritten grayscale 28x28 images of digits for training and 10,000 for testing [4]. Noise was added to the digits as follows:

```
# image is a numpy array, noise_level is an integer
def add_noise(image, noise_level):
```

noise = np.rint(np.random.normal(scale=noise_level, size=(28,28)))
return np.clip(np.absolute(image + noise), 0, 255)

Figure 1: A handwritten MNIST digit with noise levels 0, 20, 40, 60, ..., 220.

Selective Attention

The ability to operate effectively in the presence of irrelevant data

Figure 2: A handwritten MNIST digit with 0, 7, 14, 21, and 28 noisy, black, and white irrelevant columns added.

Table of Contents

- 1 The Scenario
- 2 Hierarchical Temporal Memory
- 3 Evaluation
- Experimental Results

Raid 1: Benign

-

Raid 6: Benign

Raid 7: Anomalous

Raid 1: Benign

:

Raid 6: Benign

Raid 7: Anomalous

• Each missile's position is encoded as an SDR.

Raid 1: Benign

Raid 6: Benign

Raid 7: Anomalous

 Each missile's position is encoded as an SDR. The missile SDRs are ∨ed together to get the scenario SDR.

Raid 1: Benign

Raid 6: Benign

Raid 7: Anomalous

 Each missile's position is encoded as an SDR. The missile SDRs are ∨ed together to get the scenario SDR.

 We run the scenario SDRs through the HTM pipeline to get an anomaly probability associated with each timestep.

Raid 1: Benign

Raid 6: Benign

Raid 7: Anomalous

 Each missile's position is encoded as an SDR. The missile SDRs are ∨ed together to get the scenario SDR.

- We run the scenario SDRs through the HTM pipeline to get an anomaly probability associated with each timestep.
- Success is achieved if the anomaly probability spikes when the anomalous raid begins.

Results Without Hyperparameter Optimization

Results With Hyperparameter Optimization

How useful is HTM?

How useful is HTM? Is HTM...

Noise resilient?

How useful is HTM? Is HTM...

Noise resilient? Yes, when trained on noisy data

- Noise resilient? Yes, when trained on noisy data
- Attention selective?

- Noise resilient? Yes, when trained on noisy data
- Attention selective? Not great

- Noise resilient? Yes, when trained on noisy data
- Attention selective? Not great
- Studious?

- Noise resilient? Yes, when trained on noisy data
- Attention selective? Not great
- Studious? Yes, features online learning

- Noise resilient? Yes, when trained on noisy data
- Attention selective? Not great
- Studious? Yes, features online learning
- Ready to operationalize?

- Noise resilient? Yes, when trained on noisy data
- Attention selective? Not great
- Studious? Yes, features online learning
- Ready to operationalize? No, low TRL

- Noise resilient? Yes, when trained on noisy data
- Attention selective? Not great
- Studious? Yes, features online learning
- Ready to operationalize? No, low TRL
- Experimentally plausible?

- Noise resilient? Yes, when trained on noisy data
- Attention selective? Not great
- Studious? Yes, features online learning
- Ready to operationalize? No, low TRL
- Experimentally plausible? Performed decently well in a very simple scenario

