N-Potents in Commutative Rings

Delaney Morgan

Wellesley College

January 21, 2023

Outline

(1) Some ring theory
(2) Introduction to the Project
(3) Results

Rings

Defn: A ring, R, is a nonempty set together with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

Rings

Defn: A ring, R, is a nonempty set together with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

- $a+b=b+a$ (commutativity of addition)
- $(a+b)+c=a+(b+c)$ (associativity of addition)
- There is an additive identity, denoted 0 , such that $a+0=a$
- For all a there exists an additive inverse $-a$ such that $a+(-a)=0$
- $a(b c)=(a b) c$ (associativity of multiplication)
- $a(b+c)=a b+b c$ (distributive property)

Rings

Defn: A ring, R, is a nonempty set together with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

- $a+b=b+a$ (commutativity of addition)
- $(a+b)+c=a+(b+c)$ (associativity of addition)
- There is an additive identity, denoted 0 , such that $a+0=a$
- For all a there exists an additive inverse $-a$ such that $a+(-a)=0$
- $a(b c)=(a b) c$ (associativity of multiplication)
- $a(b+c)=a b+b c$ (distributive property)

Defn: R is a commutative ring if $a b=b a$ for all $a, b \in R$

Rings

Defn: A ring, R, is a nonempty set together with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

- $a+b=b+a$ (commutativity of addition)
- $(a+b)+c=a+(b+c)$ (associativity of addition)
- There is an additive identity, denoted 0 , such that $a+0=a$
- For all a there exists an additive inverse $-a$ such that $a+(-a)=0$
- $a(b c)=(a b) c$ (associativity of multiplication)
- $a(b+c)=a b+b c$ (distributive property)

Defn: R is a commutative ring if $a b=b a$ for all $a, b \in R$
Defn: a ring R is unital if there exists some unity element 1 such that $a \cdot 1=a$ for all $a \in R$

Quotient Rings

Defn: a subring I of a ring R is called an ideal of R if for every $r \in R$ and every $a \in I, r a$ and ar are in I

Quotient Rings

Defn: a subring I of a ring R is called an ideal of R if for every $r \in R$ and every $a \in I$, ra and ar are in I

Defn: Given a ring R and an ideal I of R, the quotient ring R / I is the set $\{r+I \mid r \in R\}$

Quotient Rings

Defn: a subring I of a ring R is called an ideal of R if for every $r \in R$ and every $a \in I$, ra and ar are in I

Defn: Given a ring R and an ideal I of R, the quotient ring R / I is the set $\{r+I \mid r \in R\}$

Example: $\mathbb{Z}_{4}=\mathbb{Z} / 4 \mathbb{Z}=\{0+4 \mathbb{Z}, 1+4 \mathbb{Z}, 2+4 \mathbb{Z}, 3+4 \mathbb{Z}\}$

Products of Rings

Defn: Let R_{1}, R_{2} be rings. Then the direct product of R_{1} and R_{2} is the Cartesian product

$$
R_{1} \times R_{2}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in R_{1}, r_{2} \in R_{2}\right\}
$$

When endowed with entry-wise addition and multiplication $R_{1} \times R_{2}$ is a ring.

Products of Rings

Defn: Let R_{1}, R_{2} be rings. Then the direct product of R_{1} and R_{2} is the Cartesian product

$$
R_{1} \times R_{2}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in R_{1}, r_{2} \in R_{2}\right\}
$$

When endowed with entry-wise addition and multiplication $R_{1} \times R_{2}$ is a ring.

Defn: a subdirect product is a subring of a direct product

Potent Elements

Defn: We say $e \in R$ is an n-potent if $e^{n}=e$ for some positive integer n. When $n=2$ we call e idempotent and when $n=3$ we call e tripotent.

Potent Elements

Defn: We say $e \in R$ is an n-potent if $e^{n}=e$ for some positive integer n. When $n=2$ we call e idempotent and when $n=3$ we call e tripotent.

Defn: We say $b \in R$ is nilpotent if $b^{n}=0$ for some positive integer n.

Potent Elements

Defn: We say $e \in R$ is an n-potent if $e^{n}=e$ for some positive integer n. When $n=2$ we call e idempotent and when $n=3$ we call e tripotent.

Defn: We say $b \in R$ is nilpotent if $b^{n}=0$ for some positive integer n.
Example: Consider $\mathbb{Z}_{4} .0$ and 1 are idempotent. 0, 1, and 3 are tripotent. 0 and 2 are nilpotent.

Potent Elements

Defn: We say $e \in R$ is an n-potent if $e^{n}=e$ for some positive integer n. When $n=2$ we call e idempotent and when $n=3$ we call e tripotent.

Defn: We say $b \in R$ is nilpotent if $b^{n}=0$ for some positive integer n.
Example: Consider $\mathbb{Z}_{4} .0$ and 1 are idempotent. 0, 1, and 3 are tripotent. 0 and 2 are nilpotent.

Questions?

A few remarks

A nilpotent times anything is a nilpotent

A few remarks

A nilpotent times anything is a nilpotent
The sum of any number of nilpotents is nilpotent

A few remarks

A nilpotent times anything is a nilpotent
The sum of any number of nilpotents is nilpotent
As soon as we have non-trivial nilpotents, we are no longer in an integral domain

A few remarks

A nilpotent times anything is a nilpotent
The sum of any number of nilpotents is nilpotent
As soon as we have non-trivial nilpotents, we are no longer in an integral domain

Throughout this presentation, when we say an integer n is in R, what we really mean is that $n \cdot 1$ is in R

Research Goals

The goal of my project is to classify rings where every element can be written as the sum of one idempotent, one tripotent, and one nilpotent

Research Goals

The goal of my project is to classify rings where every element can be written as the sum of one idempotent, one tripotent, and one nilpotent

Define R to be a unital, commutative ring such that for every $a \in R$, there exists $x_{1}, x_{2}, b \in R$ with $x_{1}^{2}=x_{1}, x_{2}^{3}=x_{2}$, and $b^{m}=0$ for some m, such that $a=x_{1}+x_{2}+b$. The goal of the project is to develop a description of R

Research Goals

The goal of my project is to classify rings where every element can be written as the sum of one idempotent, one tripotent, and one nilpotent

Define R to be a unital, commutative ring such that for every $a \in R$, there exists $x_{1}, x_{2}, b \in R$ with $x_{1}^{2}=x_{1}, x_{2}^{3}=x_{2}$, and $b^{m}=0$ for some m, such that $a=x_{1}+x_{2}+b$. The goal of the project is to develop a description of R

Research has been done studying sums of idempotents, sums of tripotents, and sums of higher-powered n-potents, but relatively little work has been done on sums of mixed-powered potents

Results

We found that $6 \in R$ is a nilpotent element. So $6^{k}=0$ for some k.
$6=2 \cdot 3$, so this implies that $R \cong R / 2^{k} R \times R / 3^{k} R$
Note 2 is nilpotent in $R / 2^{k} R$ and 3 is nilpotent in $R / 3^{k} R$

Results

We have $R \cong R / 2^{k} R \times R / 3^{k} R$, we can now observe these rings more directlly. Take $R_{2}=R / 2^{k} R$ and $R_{3}=R / 3^{k} R$

Results

We have $R \cong R / 2^{k} R \times R / 3^{k} R$, we can now observe these rings more directlly. Take $R_{2}=R / 2^{k} R$ and $R_{3}=R / 3^{k} R$

Let $N(R)$ denote the ideal of all nilpotent elements in R

Results

We have $R \cong R / 2^{k} R \times R / 3^{k} R$, we can now observe these rings more directlly. Take $R_{2}=R / 2^{k} R$ and $R_{3}=R / 3^{k} R$

Let $N(R)$ denote the ideal of all nilpotent elements in R
We find that $R_{2} / N\left(R_{2}\right)$ is a subdirect product of copies of \mathbb{Z}_{2} and $R_{3} / N\left(R_{3}\right)$ is a subdirect product of copies of \mathbb{Z}_{3}

Results

We have $R \cong R / 2^{k} R \times R / 3^{k} R$, we can now observe these rings more directlly. Take $R_{2}=R / 2^{k} R$ and $R_{3}=R / 3^{k} R$

Let $N(R)$ denote the ideal of all nilpotent elements in R
We find that $R_{2} / N\left(R_{2}\right)$ is a subdirect product of copies of \mathbb{Z}_{2} and $R_{3} / N\left(R_{3}\right)$ is a subdirect product of copies of \mathbb{Z}_{3}

So we conclude that $R / N(R)$ is a subdirect product of copies of \mathbb{Z}_{2} and \mathbb{Z}_{3}

Thank you to the NCUWM organizers, and to my advisor, Alex Diesl
Thank you for attending!
Questions?

