N-Potents in Commutative Rings

Delaney Morgan

Wellesley College

January 21, 2023
1 Some ring theory
2 Introduction to the Project
3 Results
Defn: A ring, R, is a nonempty set together with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

- Commutativity of addition: $a + b = b + a$
- Associativity of addition: $(a + b) + c = a + (b + c)$
- Additive identity: There is an additive identity, denoted 0, such that $a + 0 = a$
- Additive inverse: For all a, there exists an additive inverse $-a$ such that $a + (-a) = 0$
- Associativity of multiplication: $(ab)c = a(bc)$
- Distributive property: $a(b + c) = ab + ac$

Defn: R is a commutative ring if $ab = ba$ for all $a, b \in R$.

Defn: A ring R is unital if there exists some unity element 1 such that $a \cdot 1 = a$ for all $a \in R$.

Delaney Morgan (Wellesley College) N-Potents in Commutative Rings January 21, 2023 3 / 11
Defn: A ring, R, is a nonempty set together with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

- $a + b = b + a$ (commutativity of addition)
- $(a + b) + c = a + (b + c)$ (associativity of addition)
- There is an additive identity, denoted 0, such that $a + 0 = a$
- For all a there exists an additive inverse $-a$ such that $a + (-a) = 0$
- $a(bc) = (ab)c$ (associativity of multiplication)
- $a(b + c) = ab + bc$ (distributive property)
Defn: A *ring*, R, is a nonempty set together with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

- $a + b = b + a$ (commutativity of addition)
- $(a + b) + c = a + (b + c)$ (associativity of addition)
- There is an additive identity, denoted 0, such that $a + 0 = a$
- For all a there exists an additive inverse $-a$ such that $a + (-a) = 0$
- $a(bc) = (ab)c$ (associativity of multiplication)
- $a(b + c) = ab + bc$ (distributive property)

Defn: R is a *commutative* ring if $ab = ba$ for all $a, b \in R$
Defn: A *ring*, R, is a nonempty set together with two binary operations, addition and multiplication, such that for all $a, b, c \in R$:

- $a + b = b + a$ (commutativity of addition)
- $(a + b) + c = a + (b + c)$ (associativity of addition)
- There is an additive identity, denoted 0, such that $a + 0 = a$
- For all a there exists an additive inverse $-a$ such that $a + (-a) = 0$
- $a(bc) = (ab)c$ (associativity of multiplication)
- $a(b + c) = ab + bc$ (distributive property)

Defn: R is a *commutative ring* if $ab = ba$ for all $a, b \in R$

Defn: a ring R is *unital* if there exists some unity element 1 such that $a \cdot 1 = a$ for all $a \in R$
Defn: a subring I of a ring R is called an *ideal* of R if for every $r \in R$ and every $a \in I$, ra and ar are in I.
Quotient Rings

Defn: A subring I of a ring R is called an *ideal* of R if for every $r \in R$ and every $a \in I$, ra and ar are in I.

Defn: Given a ring R and an ideal I of R, the *quotient ring* R/I is the set
$$\{ r + I \mid r \in R \}$$
Defn: a subring I of a ring R is called an *ideal* of R if for every $r \in R$ and every $a \in I$, ra and ar are in I

Defn: Given a ring R and an ideal I of R, the *quotient ring* R/I is the set $\{r + I \mid r \in R\}$

Example: $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z} = \{0 + 4\mathbb{Z}, 1 + 4\mathbb{Z}, 2 + 4\mathbb{Z}, 3 + 4\mathbb{Z}\}$
Defn: Let R_1, R_2 be rings. Then the *direct product* of R_1 and R_2 is the Cartesian product

$$R_1 \times R_2 = \{(r_1, r_2) \mid r_1 \in R_1, r_2 \in R_2\}$$

When endowed with entry-wise addition and multiplication $R_1 \times R_2$ is a ring.
Defn: Let R_1, R_2 be rings. Then the \textit{direct product} of R_1 and R_2 is the Cartesian product

$$R_1 \times R_2 = \{(r_1, r_2) \mid r_1 \in R_1, r_2 \in R_2\}$$

When endowed with entry-wise addition and multiplication $R_1 \times R_2$ is a ring.

Defn: a \textit{subdirect product} is a subring of a direct product
Defn: We say $e \in R$ is an *n-potent* if $e^n = e$ for some positive integer n. When $n = 2$ we call e *idempotent* and when $n = 3$ we call e *tripotent*.

Example: Consider \mathbb{Z}_4. 0 and 1 are idempotent. 0, 1, and 3 are tripotent. 0 and 2 are nilpotent.
Defn: We say $e \in R$ is an n-potent if $e^n = e$ for some positive integer n. When $n = 2$ we call e *idempotent* and when $n = 3$ we call e *tripotent*.

Defn: We say $b \in R$ is *nilpotent* if $b^n = 0$ for some positive integer n.
Defn: We say $e \in R$ is an n-potent if $e^n = e$ for some positive integer n. When $n = 2$ we call e idempotent and when $n = 3$ we call e tripotent.

Defn: We say $b \in R$ is nilpotent if $b^n = 0$ for some positive integer n.

Example: Consider \mathbb{Z}_4. 0 and 1 are idempotent. 0, 1, and 3 are tripotent. 0 and 2 are nilpotent.
Defn: We say $e \in R$ is an n-potent if $e^n = e$ for some positive integer n. When $n = 2$ we call e idempotent and when $n = 3$ we call e tripotent.

Defn: We say $b \in R$ is nilpotent if $b^n = 0$ for some positive integer n.

Example: Consider \mathbb{Z}_4. 0 and 1 are idempotent. 0, 1, and 3 are tripotent. 0 and 2 are nilpotent.

Questions?
A few remarks

A nilpotent times anything is a nilpotent
A few remarks

A nilpotent times anything is a nilpotent

The sum of any number of nilpotents is nilpotent
A nilpotent times anything is a nilpotent

The sum of any number of nilpotents is nilpotent

As soon as we have non-trivial nilpotents, we are no longer in an integral domain
A few remarks

A nilpotent times anything is a nilpotent

The sum of any number of nilpotents is nilpotent

As soon as we have non-trivial nilpotents, we are no longer in an integral domain

Throughout this presentation, when we say an integer n is in R, what we really mean is that $n \cdot 1$ is in R
The goal of my project is to classify rings where every element can be written as the sum of one idempotent, one tripotent, and one nilpotent.
The goal of my project is to classify rings where every element can be written as the sum of one idempotent, one tripotent, and one nilpotent.

Define R to be a unital, commutative ring such that for every $a \in R$, there exists $x_1, x_2, b \in R$ with $x_1^2 = x_1$, $x_2^3 = x_2$, and $b^m = 0$ for some m, such that $a = x_1 + x_2 + b$. The goal of the project is to develop a description of R.
Research Goals

The goal of my project is to classify rings where every element can be written as the sum of one idempotent, one tripotent, and one nilpotent.

Define \(R \) to be a unital, commutative ring such that for every \(a \in R \), there exists \(x_1, x_2, b \in R \) with \(x_1^2 = x_1 \), \(x_2^3 = x_2 \), and \(b^m = 0 \) for some \(m \), such that \(a = x_1 + x_2 + b \). The goal of the project is to develop a description of \(R \).

Research has been done studying sums of idempotents, sums of tripotents, and sums of higher-powered \(n \)-potents, but relatively little work has been done on sums of mixed-powered potents.
We found that $6 \in R$ is a nilpotent element. So $6^k = 0$ for some k.

$6 = 2 \cdot 3$, so this implies that $R \cong R/2^k R \times R/3^k R$

Note 2 is nilpotent in $R/2^k R$ and 3 is nilpotent in $R/3^k R$
We have $R \cong R/2^k R \times R/3^k R$, we can now observe these rings more directly. Take $R_2 = R/2^k R$ and $R_3 = R/3^k R$.

Let $N(R)$ denote the ideal of all nilpotent elements in R. We find that $R_2 / N(R)$ is a subdirect product of copies of \mathbb{Z}_2 and $R_3 / N(R)$ is a subdirect product of copies of \mathbb{Z}_3. So we conclude that $R / N(R)$ is a subdirect product of copies of \mathbb{Z}_2 and \mathbb{Z}_3.

Delaney Morgan (Wellesley College)
N-Potents in Commutative Rings
January 21, 2023
Results

We have $R \cong R/2^kR \times R/3^kR$, we can now observe these rings more directly. Take $R_2 = R/2^kR$ and $R_3 = R/3^kR$

Let $N(R)$ denote the ideal of all nilpotent elements in R
Results

We have $R \cong R/2^k R \times R/3^k R$, we can now observe these rings more directly. Take $R_2 = R/2^k R$ and $R_3 = R/3^k R$

Let $N(R)$ denote the ideal of all nilpotent elements in R

We find that $R_2/N(R_2)$ is a subdirect product of copies of \mathbb{Z}_2 and $R_3/N(R_3)$ is a subdirect product of copies of \mathbb{Z}_3
We have $R \cong R/2^k R \times R/3^k R$, we can now observe these rings more directly. Take $R_2 = R/2^k R$ and $R_3 = R/3^k R$

Let $N(R)$ denote the ideal of all nilpotent elements in R

We find that $R_2/N(R_2)$ is a subdirect product of copies of \mathbb{Z}_2 and $R_3/N(R_3)$ is a subdirect product of copies of \mathbb{Z}_3

So we conclude that $R/N(R)$ is a subdirect product of copies of \mathbb{Z}_2 and \mathbb{Z}_3
Thank you to the NCUWM organizers, and to my advisor, Alex Diesl

Thank you for attending!

Questions?