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Introduction
Time Series Analysis

Figure 1: Energy Information Administration (2022-09-01). Crude Oil Imports: Crude Oil
Imports | All U.S. Crude Oil Imports, 01/1981 - 06/2022. Data Planet™ Statistical Datasets: A
SAGE Publishing Resource.

Yuhan Fu (Denison University) Bayesian Online Changepoint Detection January 21, 2023 4 / 31



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

Changepoint Detection
According to Adams and Mackay, ”changepoints are abrupt variations
in the generative parameters of a data sequence.”
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Introduction

Time Series Analysis

Figure 2: Monthly data of commercial sector electric energy revenue from January 1990 to
August 2022. Data source: Energy Information Administration.
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Introduction

Time Series Analysis
Stationarity: No trend or periodic fluctuations; mean and variance
don’t vary in time.

Figure 3: The time series of commercial sector
electric energy revenue.

Figure 4: The first-order differencing of the log
of the time series.
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Introduction

Bayesian Online Changepoint Detection
The online detection algorithm:

Generates a new distribution for each upcoming datum in a sequence
based on already observed data
Differs from offline and retrospective changepoint detection (offline
signal processing):

▶ EEG analysis [1]
▶ DNA segmentation [2]
▶ NMR (nuclear magnetic resonance) analysis [3]
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Methods

Partitions and Run Length
Let xs:t denote a sequence of observations xs, xs+1, ..., xt−1, xt for
s ≤ t. Assume the T data points x1:T can be divided into
non-overlapping product partitions such that the data within each
partition are i.i.d. from some probability distribution [4].
Changepoints occur between partitions.
Run length: The time since the last changepoint occurs, denoted rt at
time t.

rt =

{
0 if changepoint at time t
rt−1 + 1 else.
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Methods
Partitions and Run Length

Figure 5: Conceptual diagrams of (a) data
partitioned by two changepoints, and (b) the
run length with respect to time.

Figure 6: The trellis of message-passing
algorithm. Each node has associated mass. For
example, the red node has probability
p(x4 = 4 | x1:4).
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Methods

Recursive run length posterior estimation
The changepoint prior
The posterior predictive
Message-passing parameter
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Recursive run length posterior estimation (Methods)

The changepoint prior
The run length has only two outcomes with nonzero mass: either
rt = rt−1 + 1 or rt = 0.
The changepoint prior has the following cases:

p(rt | rt−1) =


H(rt−1 + 1) if rt = 0

1− H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise.
(1)
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Recursive run length posterior estimation (Methods)

The changepoint prior (cont.)
The function H(τ) is the hazard function (Forbes. et al., 2011).

H(τ) =
f(τ)
S(τ) . (2)

Let T be a discrete, nonnegative random variable for the current run
length, then f(τ) is the probability that T = τ (the current run length is
τ). And S(τ) is the survival function at τ , which is the probability that
T ≥ τ or

S(τ) = P(T ≥ τ) =

∞∑
τ ′=τ

f(τ ′). (3)
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Recursive run length posterior estimation (Methods)
The changepoint prior (cont.)

Figure 7: Figure from Gregory
Gundersen(http://gregorygundersen.com/blog/2019/08/13/bocd/). The probability H(τ) for a
prior distribution f(τ).
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Recursive run length posterior estimation (Methods)

The posterior predictive
Conjugate-exponential models
The general form of an exponential family likelihoods:

p(x | η) = h(x)g(η)exp{η⊤u(x)} (4)

▶ η: natural parameter;
h(x): underlying measure;
u(x): sufficient statistic of the data;
g(η): normalizer.
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Recursive run length posterior estimation (Methods)

The posterior predictive
Use ν and χ as hyperparameters
The conjugate prior:

p(η | χ, ν) = f(χ, ν)g(η)νexp{η⊤χ}) (5)

Express the posterior by multiplying the likelihood and the prior:

p(η | X,χ, ν) =
(( N∏

i=1

h(xn
)

g(η)nexp{η⊤
N∑

n=1

u(xn)}
)

(
f(χ, ν)g(η)νexp{η⊤χ}

)
=

( N∏
i=1

h(xn)
)

f(χ, ν)g(η)N+νexp{η⊤
N∑

n=1

u(xn) + η⊤χ}.

(6)
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Recursive run length posterior estimation (Methods)

The posterior predictive
Since the first N + 1 terms are constant with respect to η,

p(η | X,χ, ν) ∝ g(η)N+νexp{η⊤(

N∑
n=1

u(xn) + χ)}. (7)

Express the updated hyperparameters ν ′ and χ′:

ν ′ = νprior + N

χ′ = χprior +
N∑

n=1

u(xn).
(8)

Since the sufficient statistics are additive, they allow us to compute
the posterior predictive efficiently and sequentially.
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Recursive run length posterior estimation (Methods)

Message-passing parameter

ν
(0)
t = νprior

χ
(0)
t = χprior

ν
(l)
t = ν

(l−1)
t−1 + 1

χ
(l)
t = χ

(l−1)
t−1 + u(xt).

(9)

ν
(l)
t−1 and χ

(l)
t−1 denote the exponential family parameters at time t

with rt−1 = l.
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Methods
Sequential inference algorithm

1 Set the initial conditions and priors

p(r0) =
{
1 if changepoint at time t = 0
p(r0 = τ) else

µ
(l)
0 = µ

(l)
prior

λ
(l)
0 = λ

(l)
prior

(here we use the precision λ = σ−2).
2 Observe new datum xt.
3 Compute predictive probability

π
(l)
t−1 = p(x | x1:n).
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Methods

4 Compute growth probabilities

p(rt = l, x1:t) = p(rt−1, x1:t−1)π
(l)
t−1(1− H(rt−1)).

5 Compute changepoint probabilities

p(rt = 0, x1:t) =
∑
rt−1

p(rt−1, x1:t−1)π
(l)
t−1H(rt − 1).

6 Compute the evidence

p(x1:t) =
∑

rt

p(rt, x1:t.)
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7 Compute the run length posterior

p(rt | x1:t) =
p(rt, x1:t)
p(x1:t)

.

8 Update sufficient statistics

µ
(l)
0 = µ

(l)
prior

λ
(l)
0 = λ

(l)
prior

µ
(l)
t =

1

λ
(l)
t

(
λ
(l)
0 µ

(l)
0 + λ

(l)
t

t∑
i=1

xi
)

λ
(l)
t = λ

(l)
0 + tλ(l)
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9 Perform prediction

p(xt+1 | x1:t) =
∑

rt

p(xt+1 | rt, x(l))p(rt | x1:t).

10 Set t = t + 1. Return to Step 2.
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Methods

Changepoint detection methods
plot the probability that a changepoint occurs at each time point t
find all local maxima that meet a certain threshold probability i.e. the
lowest probability we accept to suggest a changepoint

Figure 8: Blue line: The probability that a changepoint occurs at t. Black dashed line:
Threshold probability. Red dashed line: Indication of changepoints.
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Real-World Applications
Sierra Leone

40

20

0

20

40

60

80

100

Ne
w 

Ca
se

s

100

200

300

400

500

600

700

Ru
n 

Le
ng

th

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 9: (Top) The smoothed daily new cases of COVID-19 (blue line) in Sierra Leone and the
predictive mean (black line). (Middle) The run length posterior at each time step using a
logarithmic color scale. Darker pixels indicate higher probability. (Bottom) The probability that
a changepoint occurs at each time step. Red dashed lines denote changepoints.
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Real-World Applications
Egypt
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Figure 10: (Top) The smoothed daily new cases of COVID-19 (blue line) in Egypt and the
predictive mean (black line). (Middle) The run length posterior at each time step using a
logarithmic color scale. Darker pixels indicate higher probability. (Bottom) The probability that
a changepoint occurs at each time step. Red dashed lines denote changepoints.
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Conclusion

This Bayesian Online Changepoint Detection method is based on a
Gaussian univariate model. Depending on the type and our prior
knowledge of the data, we can also parameterize various distributions
differently, such as using an inverse gamma or an inverse chi-squared
[5].
Higher probability often results from a larger number of changepoints.
We sometimes sacrifice the probability to achieve a decent amount of
changepoints. The threshold probability also varies for different data.
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