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What is Phase Separation?

Binary alloy mixtures separates into their two distinct elements
over time.

This happens when there is no thermodynamic barrier to phase
separation.
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Applications

The classical Cahn-Hilliard modeled spinodal decomposition,
especially for binary alloys of metal or polymers

The introduction of non-local operators came with diblock
copolymers

The big bang theory describes how the universe originates from
an initial state of high heat and high density
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The Classical Cahn Hilliard Equations

The CHE uses the Laplacian to model changes on the local level.

∂tϕ =∆µ

µ = −∆ϕ+ F ′ (ϕ)

F (ϕ) is a double well

µ is a chemical potential function

The classical Cahn Hilliard has been well-studied and
established
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Adjustments to the classical CHE

We studied the doubly non-local Cahn-Hilliard (dnCHE). These
operators are taken with respect to probability kernels.

∂tϕ (x, t) = LJ (µ (x, t))

µ (x, t) = −LK (ϕ (x, t)) + F ′ (ϕ(x, t))

The inclusion of non-local operators allows for a more robust
model.
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Non-local Operator

The non-local operator is defined to be:

LJµ =

∫
Ω
J(x− y)(µ(y)− µ(x))dy

=

∫
Ω
J(x− y)(µ(y))dy −

∫
Ω
J(x− y)(µ(x))dy

= J ∗ µ− µ(x)aJ
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Fractional Time Calculus

The fractional time derivative accounts for system memory. In
order to define it, we must first define fractional time integral.

Jαt = gα ∗ f(t)

where gα is a piece wise Γ function defined as

gα =

{ 1
Γ(α) t

α−1 if t > 0

0 if t ≤ 0

and ∗ represents time convolution.
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Fractional Time Derivative

Now, using Jαt , we define the fractional time derivative.

cDα
t = J1−α

t (f ′(t))

where D1
t =

d
dt , and α ∈ (0, 1).

cD
1
4
t = J

1− 1
4

t (f ′(t))

1
4

1

-1

f ′(t)

f(t)∫ t
0 f(s)ds
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FDE Solution

Consider the standard FDE:{
cDα

t u(t) = u(t) t > 0
u(0) = u0

We apply the fractional integral to both sides:

u(t) = u0 + Jαt u(t)

u(t) = u0 +
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds
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Modified Doubly Non-Local Cahn-Hilliard

We modify the dnCHE using time convolution.

k ∗ ∂tϕ (x, t) = LJ (µ (x, t))

µ (x, t) = −LK (ϕ (x, t)) + F ′ (ϕ(x, t))

k is a kernel that we can select as we like. Hence we choose g1−α
as our kernel k, modeling after the Caputo fractional derivative.

g1−α ∗ ∂tϕ (x, t) = LJ (µ (x, t))

µ (x, t) = −LK (ϕ (x, t)) + F ′ (ϕ(x, t))
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Existence Overview

We define our set Y to be functions that are:

Bounded in space by M

Continuous in time from [0, T ∗]

Where M = 2∥ϕ0∥L∞(Ω) and T
∗ ≤

(
αΓ(α)∥ϕ0∥L∞(Ω)

2∥J∥L1M(2∥K∥L1+CM)

) 1
α

We also define Picard Iterates:

ϕn(x, t) = ϕ0 +

∫ t

0
gα(t− s)(J ∗ µn−1 − aJµn−1)ds

µn−1(t, x) = −(K ∗ ϕn−1) + aKϕn−1 + F ′(ϕn−1)
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Bounded in Space

Assuming the previous iterate is bounded, we can bound the next
iterate.

∥ϕn∥L∞(Ω) =

∥∥∥∥ϕ0 + ∫ t

0
gα(t− s)(J ∗ µn−1 − aJµn−1)(s)ds

∥∥∥∥
L∞(Ω)

≤ ∥ϕ0∥L∞(Ω) +

(
2

αΓ(α)
∥J∥L1 (2 ∥K∥L1 + CM )M

)
(T ∗)α

≤ ∥ϕ0∥L∞(Ω) + ∥ϕ0∥L∞(Ω)

⇒ ∥ϕn∥L∞(Ω) ≤M

13 / 26 NCUWM 2023



Continuous in Time

We proved for all n:

ϕn is continuous in time

∥ϕn+1 − ϕn∥L∞(Ω) ≤ C(g(n+1)α ∗ 1) = Ct(n+1)α

Γ((n+1)α)(n+1)α

We then found:

∥ϕ(t, x)∥L∞(Ω) ≤ ∥ϕ0∥L∞(Ω) +
∞∑
n=0

∥ϕn+1 − ϕn∥L∞(Ω)

≤ ∥ϕ0∥L∞(Ω) +
∞∑
n=0

Ct(n+1)α

Γ((n+ 1)α)(n+ 1)α

= ∥ϕ0∥L∞(Ω) + Eα,1(t
α)

By M-Test and ULT, ϕ is continuous in time.
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Uniqueness

Theorem (Gronwall’s Fractional Inequality)

Let a, g be non-decreasing and g(t) ≤ C for all t ∈ [0, T ] and
0 < β < 1. If x ∈ L∞

+ and

x(t) ≤ a(t) + g(t)

∫ t

0
(t− s)β−1x(s)ds

then, x(t) ≤ a(t)Eβ(g(t)Γ(β)(t
β)).

Assume ϕ and ψ are both solutions,

∥ϕ− ψ∥L∞(Ω) =

∣∣∣∣∣
∣∣∣∣∣ϕ0 +

∫ t

0
gα(J ∗ µϕ − aJµϕ)

−
(
ϕ0 +

∫ t

0
gα(J ∗ µψ − aJµψ)

) ∣∣∣∣∣
∣∣∣∣∣
L∞(Ω)

≤ 0 · Eα,1(CΓ(α)tα) = 0 =⇒ ϕ = ψ
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Approximating g1−α ∗ ∂tϕ = LJµ

For the RHS we use:

Riemann Sums

LJµ(tn, xm) =

∫
Ω
J(xm − y) (µ(y)− µ(xm)) dy

≈ ∆x

M∑
i=1

J(xm − xi) (µ(xi)− µ(xm))

Recall µ = −LKϕ+ F ′(ϕ)
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Approximating F ′(ϕ)

Recall F (ϕ) is a double-well
potential function:

Two minima at -1 and 1

Can be approximated using a
fourth degree polynomial

Take F (ϕ) = 1
4ϕ

4 − 1
2ϕ

2

=⇒ F ′(ϕ) = ϕ3 − ϕ
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Approximating g1−α ∗ ∂tϕ = LJµ

For the LHS we use:

Forward Differencing

g1−α ∗ ∂tϕ(tn+1, xm) =
1

Γ(1− α)

∫ t

0
(t− s)−α ∂sϕ(tn+1, xm) ds
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Approximating g1−α ∗ ∂tϕ = LJµ

For the LHS we use:

Forward Differencing

g1−α ∗ ∂tϕ(tn+1, xm) =
1

Γ(1− α)

∫ t

0
(t− s)−α ∂sϕ(tn+1, xm)︸ ︷︷ ︸ ds

ϕ(x, tn+1)− ϕ(x, tn)

∆t

≈ 1

Γ(1− α)

n∑
j=0

ϕ(x, tn+1)− ϕ(x, tn)

∆t

∫ tj+1

tj

(tj+1 − s)−αds

Then we equate the two approximations and solve for ϕ(tn+1, xm)
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Numerics Results

Simulations details:

x ∈ (−1, 1) - taking 27 steps

t ∈ [0, 1] - taking 26 steps

Values of α = .1, .25, .5, .9

One dimension

Initial Conditions ∈ Y :

ϕ0 = .5 cos(πx)
ϕ0 = random values of -1 and 1
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Numerics Results (Everything)
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Numerics Results (Cos)
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Numerics Results (Random)
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Numerics Results Convergence
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Closing Remarks

We proved existence and uniqueness of solution for the dnCHE
with a fractional time derivative

We provided basic numerics to show convergence of our
fractional derivative approximation to the classical derivative
approximation.

Using a different numerical scheme, we might have better
results or have less computation time heavy simulations.

We can explore what other kernels k can be applied to our
modified dnCHE and find what applications such models would
have.
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