A Modified Cahn-Hilliard?
It’s Convoluted

Saja Gherri

January 21st, 2023

NCUWM 2023, University of Nebraska-Lincoln

NCUWM 2023



Acknowledgements

O.
(75) ¥
STaTes 0F

11

NCUWM 2023



What is Phase Separation?

Binary alloy mixtures separates into their two distinct elements
over time.
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What is Phase Separation?

Binary alloy mixtures separates into their two distinct elements
over time.

This happens when there is no thermodynamic barrier to phase
separation.
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Applications

m The classical Cahn-Hilliard modeled spinodal decomposition,
especially for binary alloys of metal or polymers

m The introduction of non-local operators came with diblock
copolymers

m The big bang theory describes how the universe originates from
an initial state of high heat and high density




The Classical Cahn Hilliard Equations

The CHE uses the Laplacian to model changes on the local level.

Op =Ap
p=—A¢+F'(p)

m F (¢) is a double well
m 4 is a chemical potential function

m The classical Cahn Hilliard has been well-studied and
established
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Adjustments to the classical CHE

We studied the doubly non-local Cahn-Hilliard (dnCHE). These
operators are taken with respect to probability kernels.

i (x>t) =2y (:u (x7t))
p(z,t) = =L (¢ (x,t) + F' (¢(2,1))

The inclusion of non-local operators allows for a more robust
model.
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Non-local Operator

The non-local operator is defined to be:

Ly = /Q J(& — y)(u(y) — p(x))dy
Y

— [ I =iy~ [ )@y
Q

Q
= Jxp—p(x)ay
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Fractional Time Calculus
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Fractional Time Calculus

The fractional time derivative accounts for system memory. In
order to define it, we must first define fractional time integral.

Jta:ga*f(t)

where g, is a piece wise I' function defined as

1 -1 =
g _ Wta 1ft>0
@ 0 ift<0

and * represents time convolution.
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Fractional Time Derivative

Now, using J;*, we define the fractional time derivative.
D = J 7 (f'(t))

where D} = 4. and a € (0,1).
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FDE Solution

Consider the standard FDE:

{ cDfu(t) =wu(t) t>0
u(0) = ug

We apply the fractional integral to both sides:

u(t) = up + Jiu(t)
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Modified Doubly Non-Local Cahn-Hilliard

We modify the dnCHE using time convolution.

kx 0 (x,t) = Ly (u(x,t))
p(x,t) = —Lr (¢ (z,t) + F ($(z, 1))

k is a kernel that we can select as we like. Hence we choose g1_q
as our kernel k, modeling after the Caputo fractional derivative.

J1—a * 0@ (l’, t) =2y (:u (l’, t))
plz,t) = =L (¢ (x,1) + F ($(z, 1))
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Existence Overview

We define our set Y to be functions that are:

m Bounded in space by M

m Continuous in time from [0, 7]

Ql~

_ * al(a)|lgoll oo (@)
m Where M = 2|[¢o|| (o) and T < <2||JIIL1M(2K|L1+CM)>
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Existence Overview

We define our set Y to be functions that are:

m Bounded in space by M

m Continuous in time from [0, 7]

Ql~

_ * al(a)|lgoll oo (@)
m Where M = 2|[¢o|| (o) and T < <2||JIIL1M(2K|L1+CM)>

We also define Picard Iterates:

t
én(z,t) = ¢o +/O Ga(t = 8)(J * pin—1 — agpin—1)ds

,Ufnfl(t,m) = _(K * ¢n71) + CLK‘bnfl + F,(anfl)
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Bounded in Space

Assuming the previous iterate is bounded, we can bound the next

iterate.
t
I bullzoeey = |10 + / Galt — $)(J % fn_1 — agpin_1)(s)ds
0 L(Q)
2 *\ o
< [6oll ey + (M 1l QUK + cM>M) (%)

< [l@oll Loy + d0ll oo (@)
= |[nllreo(o) < M
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Continuous in Time

We proved for all n:

m ¢, is continuous in time
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Continuous in Time

We proved for all n:

m ¢, is continuous in time

(n+1l)a
m ||ppy1 — ¢nHL<>°(Q) < C(Q(n+1)a x1) = m
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Continuous in Time

We proved for all n:

m ¢, is continuous in time
Ct(n+ha
m (| pny1 — <Z5nHL<>° <C(g 9(n+1)a * 1) = Tt Do) (nt Do

We then found:
[o(t, )| Loo () < @0l Lo () + Z [Pn+1 — bullLoo()

n=0
Ct(n+1)

< lléollo e +Z (n+Da)(n+ 1)«

= |0l oo () + Ea,l( “)

By M-Test and ULT, ¢ is continuous in time.
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Uniqueness

Theorem (Gronwall’s Fractional Inequality)
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Uniqueness

Theorem (Gronwall’s Fractional Inequality)

Assume ¢ and v are both solutions,

t
¢o + /0 Ga(J * f1p — aqus)

¢ — Yllpe() =
— | ¢o+ ; Ga(J * py —aJuw))

Lo (82)
<0 Ea1(CT(a)t?) =0 = ¢ =1
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Approximating gi_, * 0,0 = L5

For the RHS we use:

® Riemann Sums

Lyt ) = /Q J(m — ) (uy) — plm)) dy

m Recall p = —Lxo+ F'(¢)
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Approximating F'(¢)

Recall F(¢) is a double-well
potential function:

m Two minima at -1 and 1

m Can be approximated using a
fourth degree polynomial

m Take F(¢) = %(]54 — %¢2
= Fl(¢)=¢"—¢
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Approximating gi_, * 0,0 = L5

For the LHS we use:

m Forward Differencing

1 t o
gl—a * 8t¢(tn+1a xm) = ) /0 (t - 5) 8s¢(tn+la xm) ds

'l -«
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Approximating gi_, * 0,0 = L5

For the LHS we use:

m Forward Differencing

1 ¢ o ?
gl—a * 8t¢(tn+1a xm) = F<1_a)/0 (t - 5) 05¢(trz+1a lm) ds
¢($, trL+1> - ¢(L, t'n,)
At
. 1 & ¢(.%', tn+1) — ¢($, tn) tit1 ] —a
NF(l—a)jZ:; A /tj (tj+1—s) %ds

Then we equate the two approximations and solve for ¢(t,+1, Zm)
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Numerics Results

Simulations details:

m z € (—1,1) - taking 27 steps
m t € [0,1] - taking 25 steps

m Values of o = .1,.25,.5,.9

m One dimension

m Initial Conditions € Y

m ¢y = .5cos(mx)
m ¢9 = random values of -1 and 1
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Numerics Results (Everything)
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Numerics Results (Cos)
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Numerics Results (Random)
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Numerics Results Convergence
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Closing Remarks

m We proved existence and uniqueness of solution for the dnCHE
with a fractional time derivative
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Closing Remarks

m We proved existence and uniqueness of solution for the dnCHE
with a fractional time derivative

m We provided basic numerics to show convergence of our
fractional derivative approximation to the classical derivative
approximation.

m Using a different numerical scheme, we might have better
results or have less computation time heavy simulations.

m We can explore what other kernels k can be applied to our
modified dnCHE and find what applications such models would
have.
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