Almost All Wreath Product Character Values are Divisible by Given Primes

Hannah Graff

Coauthors: B. Dong, J. Mundinger, S. Rothstein, L. Vescovo Directed by Nate Harman

MathILy-EST 2022 REU
NCUWM 2023

MathILy-EST 2022 REU

Table of Contents

(1) Character Table Background

What is the Symmetric Group?
What is a Character Table?
How do we calculate character values?
(2) Wreath Products

What is a Wreath Product?
How do we adapt the Symmetric Group to Wreath Products?
What does a Wreath Product Character Table look like?
(3) Research

Peluse and Soundararajan did what??
Hardcore T-core did what??

The Symmetric Group

The symmetric group (a.k.a $\mathbf{S}_{\mathbf{N}}$): all permutations of N objects

Example: $\mathbf{N}=\mathbf{3}$

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \sim(\mathbf{1 2 3})} & {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \sim(\mathbf{1 3 2})} \\
\mathrm{e}_{1}: 1 \rightarrow 2 & \mathrm{e}_{1}: 1 \rightarrow 3 & {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \sim(\mathbf{1 2)}(\mathbf{3})} \\
\mathrm{e}_{2}: 2 \rightarrow 3 & \mathrm{e}_{2}: 2 \rightarrow 1 & \mathrm{e}_{1}: 1 \rightarrow 2 \\
\mathrm{e}_{3}: 3 \rightarrow 1 & \mathrm{e}_{3}: 3 \rightarrow 2 & e_{2}: 2 \rightarrow 1 \\
& e_{3}: 3 \rightarrow 3
\end{array}
$$

In the symmetric group, we are looking at cycle types.
Example: $\mathbf{N}=\mathbf{3}$

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \rightsquigarrow \quad(12)(3) \quad \rightsquigarrow \begin{gathered}
\text { cycle type: } \\
(21)
\end{gathered} \rightsquigarrow \begin{gathered}
\text { Young } \\
\text { diagram: } \\
\square
\end{gathered}
$$

Here are some elements in S_{3} and their corresponding cycle types:

$$
\begin{aligned}
& \text { (12)(3) } \rightarrow[21] \\
& (13)(2) \rightarrow[21] \\
& (1)(2)(3) \rightarrow\left[1^{3}\right] \\
& (123) \rightarrow[3]
\end{aligned}
$$

Character Tables

A character table is an array of numbers encoding useful information about the representation theory of a finite group in compact form.

For S_{N}, columns and rows are indexed by partitions of \mathbf{N}.

- Column labels: cycle types
- Row labels: irreducible representations

S_{3}	$\left[1^{3}\right]$	$[21]$	$[3]$
\square	1	1	1
$巴$	2	0	-1
$日$	1	-1	1

An entry in the table is called a character value.

Calculating Character Values

Use the combinatorial Murnaghan-Nakayama rule, which involves the idea of a rimhook.

Rules for finding valid rimhooks:
A rimhook is a connected subset of the Young diagram such that:
(1) No outside boxes south or east
(2) No box southeast of it (must be on the borderstrip)

To calculate a character value, we remove rimhooks of lengths according to the cycle types (column labels) from the characters (row labels).

Zeros of the Character Table

We are focused on the zeros!
Note: when we take the entire character table modulo a prime number,

$$
0(\bmod p)=\text { divisible by } \mathbf{p}
$$

Forced zeros: when you can't take any valid rimhook from the cycle type

- Example in S_{3} : try to take (21) from

It's impossible!
For sufficiently large N , we are (nearly) guaranteed an entire column of forced zeros when our column has a big first digit.

Wreath Products

A wreath product (2) is a special combination of two groups. Here, we will be "wreathing" a finite group G with S_{N}.

S_{N}	symmetric group	set of $N \times N$ permutation matrices
$G \backslash S_{N}$	wreath product of G with S_{N}	set of $N \times N$ permutation matrices with non-zero entries in G

Example: $\mathbf{B}_{\mathbf{N}}$ (a.k.a the signed symmetric group!) where $\{-1,1\} \in G$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \in S_{3} \quad\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] \in B_{3}
$$

Coin analogy!

Row \& Column Labels

Similar to symmetric group character tables!
We index rows and columns with multi-partitions of cycle types (instead of partitions).

partition of 6

2-multi-partition of 6
3-multi-partition of 6
2-multipartition of 6

Wreath Product Character Table

Character Table of B_{2}

	$\left[1^{2}, \emptyset\right]$	$[2, \emptyset]$	$[1,1]$	$\left[\emptyset, 1^{2}\right]$	$[\emptyset, 2]$
(\square, \emptyset)	1	-1	1	1	-1
(\square, \emptyset)	1	1	1	1	1
(\square, \square)	2	0	0	-2	0
(\emptyset, \square)	1	-1	-1	1	1
$(\emptyset, \square \square)$	1	1	-1	1	-1

Previous Research

Recall from earlier: For sufficiently large N , we are (nearly) guaranteed an entire column of forced zeros when our column has a big first digit.

In 2020, Sarah Peluse and Kannan Soundararajan proved:
"In the character table of S_{N}, for all primes $p \ll N$, the proportion of entries divisible by p tends to 1 as $N \rightarrow \infty$."

Paraphrased: Almost all symmetric group character values are divisible by given primes!

Column Congruence mod p Lemma

For a prime $p \ll N$, Peluse and Soundararajan showed the following:
Entries in two columns of a symmetric group character table are congruent mod \mathbf{p} if you can transform one Young diagram into another by either:
(1) cutting up one big row into p equal rows
(2) mashing p equal rows into one big row

Example in S_{4} where $p=3$:

$$
\sim_{3}
$$

(31)

More transformations

This can be done repeatedly!
Example in S_{12} for $\mathbf{p}=\mathbf{2}$:

$\left(4^{2} 2^{2}\right)$

$\left(42^{4}\right)$

$\left(42^{2} 1^{4}\right)$

Reading left to right, we cut up a big row into 2 equal rows Reading right to left, we mash 2 equal rows into a big row

Wreath Product Lemma

Same idea as before (lots of cutting and mashing), but now we're dealing with multi-partitions, so we add in the traffic rule! (a.k.a. stay in your lane)

Example in B_{14} where $p=3$:

\sim_{3}

\sim_{3}

$\left(61,41^{3}\right)$
\sim_{3}
$\left(2^{3} 1,43\right)$
$\sim_{3} \quad\left(1^{7}, 41^{3}\right)$
Lots of columns are congruent mod primes!

Reasoning

Why do we want to mash and cut column labels to determine column congruence mod primes?

Because

(1) Mashing gives us a big first row, which gives us...
(2) A forced zero, which gives us...
(3) $0(\bmod p)$, which means divisible by our given prime!

From here, we do a bit more combinatorics to prove:
"For wreath products of a finite group G and S_{N}, the proportion of entries divisible by p tends to 1 as $N \rightarrow \infty$."

Almost All Wreath Product Character Values are Divisible by Given Primes!

Thank you!

