Almost All Wreath Product Character Values are Divisible by Given Primes

Hannah Graff

Coauthors: B. Dong, J. Mundinger, S. Rothstein, L. Vescovo Directed by Nate Harman

MathILy-EST 2022 REU

NCUWM 2023

MathILy-EST 2022 REU

Table of Contents

Character Table Background

What is the Symmetric Group?
What is a Character Table?
How do we calculate character values?

Wreath Products

What is a Wreath Product? How do we adapt the Symmetric Group to Wreath Products? What does a Wreath Product Character Table look like?

8 Research

Peluse and Soundararajan did what?? Hardcore T-core did what??

Character Table Background

The Symmetric Group

The symmetric group (a.k.a S_N): all permutations of N objects

Example: N = 3

 $e_1: 1 \rightarrow 2$

 $e_2: 2 \rightarrow 3$

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \sim (123) \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \sim (132) \qquad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim (12)(3)$$

$$e_1: 1 \rightarrow 3$$

$$e_3: 3 \rightarrow 1$$

$$e_2: 2 \rightarrow 1$$

$$e_3: 3 \rightarrow 2$$

$$\textcolor{red}{e_1}: \quad 1 \rightarrow 2$$

$$\textcolor{red}{e_2}: \quad 2 \rightarrow 1$$

$$\textcolor{red}{e_3}: \quad 3 \rightarrow 3$$

In the symmetric group, we are looking at cycle types.

Example: N = 3

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \rightsquigarrow \qquad (12)(3) \qquad \rightsquigarrow \qquad \text{cycle type:} \qquad \qquad \rightsquigarrow \qquad \text{diagram:}$$

Here are some elements in S_3 and their corresponding cycle types:

$$(12)(3) \rightarrow [21]$$
 $(13)(2) \rightarrow [21]$ $(1)(2)(3) \rightarrow [1^3]$ $(123) \rightarrow [3]$

Character Tables

A **character table** is an array of numbers encoding useful information about the representation theory of a finite group in compact form.

For S_N , columns and rows are indexed by **partitions of N**.

- Column labels: cycle types
- Row labels: irreducible representations

S ₃	$[1^3]$	[21]	[3]
ш	1	1	1
\mathbb{P}	2	0	-1
H	1	-1	1

An entry in the table is called a **character value**.

Calculating Character Values

Use the combinatorial Murnaghan-Nakayama rule, which involves the idea of a **rimhook**.

Rules for finding valid rimhooks:

A **rimhook** is a connected subset of the Young diagram such that:

- No outside boxes south or east
- No box southeast of it (must be on the borderstrip)

To calculate a character value, we **remove rimhooks** of lengths according to the *cycle types* (column labels) from the *characters* (row labels).

Zeros of the Character Table

We are focused on the zeros!

Note: when we take the entire character table modulo a prime number,

$$0 \pmod{p} =$$
divisible by p

Forced zeros: when you can't take any valid rimhook from the cycle type

• Example in S_3 : try to take (21) from

It's impossible!

For sufficiently large N, we are (nearly) **guaranteed** an entire column of **forced zeros** when our column has a big first digit.

Wreath Products

A **wreath product** (\wr) is a special combination of two groups. Here, we will be "wreathing" a finite group G with S_N .

S _N	symmetric group	set of $N \times N$ permutation matrices		
$G \wr S_N$	wreath product of G with S_N	set of $N \times N$ permutation matrices with non-zero entries in G		

Example: $\mathbf{B_N}$ (a.k.a the signed symmetric group!) where $\{-1,1\} \in \mathcal{G}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \in S_3$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \in B_3$$

Coin analogy!

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ト ○ 差 ○ 夕 Q C

Row & Column Labels

Similar to symmetric group character tables!

We index rows and columns with **multi-partitions** of **cycle types** (instead of partitions).

Wreath Product Character Table

Character Table of B_2

	$[1^2,\emptyset]$	$[2,\emptyset]$	[1, 1]	$[\emptyset,1^2]$	[Ø, 2]
$\left(\begin{bmatrix} 1 \end{bmatrix}, \emptyset \right)$	1	-1	1	1	-1
$(\Box \Box, \emptyset)$	1	1	1	1	1
(\Box, \Box)	2	0	0	-2	0
(\emptyset, \boxminus)	1	-1	-1	1	1
(\emptyset, \square)	1	1	-1	1	-1

Previous Research

Recall from earlier: For sufficiently large N, we are (nearly) **guaranteed** an entire column of **forced zeros** when our column has a big first digit.

In 2020, Sarah Peluse and Kannan Soundararajan proved:

"In the character table of S_N , for all primes p << N, the proportion of entries divisible by p tends to 1 as $N \to \infty$."

Paraphrased: Almost all symmetric group character values are divisible by given primes!

Column Congruence mod p Lemma

For a prime $p \ll N$, Peluse and Soundararajan showed the following:

Entries in two columns of a symmetric group character table are **congruent mod p** if you can transform one Young diagram into another by either:

- cutting up one big row into p equal rows
- @ mashing p equal rows into one big row

Example in S_4 where p=3:

 \sim_3

$$\sim$$
2

More transformations

This can be done repeatedly!

Example in S_{12} for $\mathbf{p} = \mathbf{2}$:

Reading **left to right**, we **cut up** a big row into 2 equal rows Reading **right to left**, we **mash** 2 equal rows into a big row

Wreath Product Lemma

Same idea as before (lots of cutting and mashing), but now we're dealing with multi-partitions, so we add in the **traffic rule**! (a.k.a. stay in your lane)

Example in B_{14} where p=3:

Lots of columns are congruent mod primes!

Reasoning

Why do we want to mash and cut column labels to determine column congruence mod primes?

Because

- Mashing gives us a **big first row**, which gives us...
- A **forced zero**, which gives us...
- 3 0 (mod p), which means divisible by our given prime!

From here, we do a bit more combinatorics to prove:

"For wreath products of a finite group G and S_N , the proportion of entries divisible by p tends to 1 as $N \to \infty$."

Almost All Wreath Product Character Values are Divisible by Given Primes!

Thank you!

