Extending a Putnam Problem

Rachael Harbaugh

Putnam Exam

- ► The William Lowell Putnam Mathematical Competition is the leading mathematics competition for undergraduate students in the United States and Canada.
- ► The Putnam exams began in 1938 as a competition between mathematics departments at different colleges.
- Set up:
 - ► Two 3-hour sessions
 - ► A1-A6
 - ▶ B1-B6

B1 from 1973

- Focusing on problem B1 from the 1973 Putnam Exam.
- ▶ B1 is usually easiest problem
- ► This year A1 and B1 were unusually difficult

B1. S is a finite collection of integers, not necessarily distinct. If any element of S is removed, then the remaining integers can be divided into two collections with the same size and the same sum. Show that all elements of S are equal.

Introduction

- Among the Putnam exam problems that generated significant interest in the subsequent years is the problem B1 from 1973 ("2n+1 problem" from here on):
- "S is a finite collection of integers, not necessarily distinct. If any element of S is removed, then the remaining integers can be divided into two collections with the same size and the same sum. Show that all elements of S are equal."
- It has been noticed and actually proved that the 2n+1 problem is still valid if the word "integers" is replaced with "real numbers".
- In the present article will prove a generalization of the above stated Putnam problem. Our main result splits into m groups of n (compared to 2 groups of n as in the 2n+1 problem) once any arbitrary set of r elements is removed (compared to one element as in the 2n+1 problem) and is valid over any field L of characteristic zero. The proof will be provided in Section 2.

Generalization

Theorem 1: Let $m \ge 2$, $n, r \ge 1$, and N = mn + r. If $x_1, x_2, ..., x_N$ are elements of a field L of characteristic zero with the property that no matter which r of the x_i 's are removed the remaining mn elements can be split into m groups of size n with equal sums, then $x_1 = x_2 = ... = x_N$.

Counterexample in finite characteristic

Interestingly, we will see that a similar statement to that in Theorem 1 generally fails in fields of prime characteristic. As a quick counterexample, if m=n=2 and r=1, it can be seen that the elements $0,1,2,3,4\in F_5$ have the property that no matter which one is removed, the remaining four can be split into two groups of two with equal sums in the finite field F_5 . More explicitly, the possible splits are $\{0\}\cup\{1,4\}\cup\{2,3\}$, $\{1\}\cup\{0,2\}\cup\{3,4\}$, $\{2\}\cup\{1,3\}\cup\{0,4\}$, $\{3\}\cup\{2,4\}\cup\{0,1\}$ and $\{4\}\cup\{0,3\}\cup\{1,2\}$.

Proof of Theorem 1

In this section we will prove the validity of Theorem 1 (involving partitions into m groups of n when any r of the x_i 's are removed) over any field L of characteristic 0, in other words any field that contains \mathbb{Q} as a subfield.

This will be done gradually over the ascending set of domains $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset L$.

CASE 1: $x_1, x_2, ..., x_N$ are nonnegative integers. Then the proof will proceed by induction over the maximum value $M = \max(x_1, x_2, ..., x_N)$. Let $S = x_1 + x_2 + ... + x_N$.

But first, let us begin by noting that since the removal of any r of the x_i 's, say $x_{i_1}, x_{i_2}, \dots, x_{i_r}$, allows for the split of the remaining mn elements x_i into m groups of n with equal sums, it follows that

(1)
$$S - (x_{i_1} + x_{i_2} + \ldots + x_{i_r}) \equiv 0 \pmod{m}$$

for all choices of r distinct indices $i_1, i_2, ..., i_r$. From (1) we find that the sums $x_{i_1} + x_{i_2} + ... + x_{i_r} \mod m$ of any r elements x_i out of $x_1, x_2, ..., x_N$ are the same. The following Lemma would be essential in the unfolding of the induction proof.

Lemma: $x_1 \equiv x_2 \equiv \ldots \equiv x_N \pmod{m}$.

Proof of lemma- see paper

Concluding Case 1

Now that the Lemma is proved, the proof of Case 1 will be done by induction over the maximum value $M = \max(x_1, x_2, ..., x_N)$.

If M=0 there is nothing to prove, since then $x_1=x_2=...=x_N=0$. Let M>0 and let $\rho:=x_i \mod m$ the same for all i ($0 \le \rho \le m-1$). Then it is easy to see that the elements

 $x_1' = \frac{x_1 - \rho}{m}, x_2' = \frac{x_2 - \rho}{m}, ..., x_N' = \frac{x_N - \rho}{m} \text{ have the same property as } x_1, x_2, ..., x_N, \text{ in that the removal of any } r \text{ of the } x_i' \text{ s allows for the split of the remaining } mn \text{ elements } x_j' \text{ into } m \text{ groups of } n \text{ with equal sums. Here the assumption that the groups are equal in size is essential. Since } \max\left(x_1', x_2', ..., x_N'\right) < M,$ the inductive hypothesis yields $x_1' = x_2' = ... = x_N'$, and hence $x_1 = x_2 = ... = x_N$.

CASE 2: $x_1, x_2, ..., x_N \in \mathbb{Z}$. This will be proved by a reduction to Case 1. To that effect, let A be a positive integer such that $x_1' = x_1 + A, x_2' = x_2 + A, ..., x_N' = x_N + A$ are natural numbers. Clearly, $x_1', x_2', ..., x_N'$ have the same property as $x_1, x_2, ..., x_N$, in that the removal of any r of the x_i 's allows for the split of the remaining mn elements x_j' into m groups of n with equal sums. From Case 1, $x_1' = x_2' = ... = x_N'$, and hence $x_1 = x_2 = ... = x_N$.

CASE 3: $x_1, x_2, ..., x_N \in \mathbb{Q}$. This will be proved by a reduction to Case 2. To that effect, let B be an integer such that $x_1' = Bx_1, x_2' = Bx_2, ..., x_N' = Bx_N$ are integers having the property that the removal of any r of the x_i 's allows for the split of the remaining mn elements x_j' into m groups of n with equal sums. From Case 2, $x_1' = x_2' = ... = x_N'$, and hence $x_1 = x_2 = ... = x_N$.

CASE 4: $x_1, x_2, ..., x_N \in L$. This will be proved by a reduction to Case 3 by using the coordinates of $x_1, x_2, ..., x_N$ with respect to a basis of L/\mathbb{Q} . Details- see paper

Finite Characteristic Case

We see that in finite characteristic, the "m groups of n" type of statements such as the one proved in Theorem 1 for fields of characteristic 0, is not necessarily true. The following theorem provides a class of counterexamples when mn + 1 is a prime p. Note that according to Dirichlet's Theorem for prime numbers in arithmetic progressions (see [2, Chapter 7]), for every $m \ge 2$, there are infinitely many primes p such that $p \equiv 1 \pmod{m}$, that is primes of the form p = mn + 1.

Generalization

Theorem 2. Let $m \ge 2$, $n \ge 1$ be integers and assume that p := mn + 1 is a prime. Let g be a primitive root modulo p. Consider the partition of the finite prime field $F_p = \{0, 1, ..., p - 1\}$ consisting of $\{0\}$ and the m size n cosets in F_p^* of the multiplicative group of the nonzero n mth powers $\{g^m, g^{2m}, ..., g^{nm} = 1\}$:

$$\{0\} \cup \bigcup_{s=0}^{m-1} \{g^{s+m}, g^{s+2m}, ..., g^{s+nm}\}.$$
 (5)

Then the modular translations in F_p of the partition (5) cover all instances in which an element of the set F_p is removed, while the remaining mn elements are split into m groups of n with equal sums. Thus they provide a counterexample in characteristic p of the statement proved in Theorem 1 for characteristic p.

Example

Example. This is a practical, hands-on way to construct the counterexample for small values of the parameters. Let m = 3, n = 4. Then p = mn + 1 = 13. As a primitive root modulo 13, we take g = 2.

Let us list the elements of F_{13}^* as powers of the primitive root 2:

K	1	2	3	4	5	6	7	8	9	10	11	12
$2^k \mod 13$	2	4	8	3	6	12	11	9	5	10	7	1

To get our 3 blocks of 4 upon the removal of 0, we take every third element in the row of the powers (second row) of the above table, so the three groups are

$$\{2, 3, 11, 10\}, \{4, 6, 9, 7\}, \text{ and } \{8, 12, 5, 1\}.$$
 (7)

Example cont.

Thus if we remove the element 0 out of F_{13} , then the remaining 12 elements can be split into the above 3 groups of 4 with equal sums (the equal sums are zero in this case). What about removing other elements? Say, for example, we remove $2 \in F_{13}$. As indicated in the proof of Theorem 2, we add 2 to each element of a block in (7). Therefore, if we remove the element 2 out of F_{13} , then the remaining 12 elements can be split into the following 3 groups of size 4 with equal sums:

As it is easy to see, the sum in each group is 8, which is consistent with the previous construction given in Theorem 2 ($na = 4 \cdot 2 = 8$). Table 1 below displays an interesting combinatorial pattern, showing all partitions in 3 groups of size 4 occurring when each element of F_{13} is removed.

Element removed	Group 1	Group 2	Group 3	Shift	Sum per group
0	2, 3, 10, 11	4, 6, 7, 9	1, 5, 8, 12	0	0
1	3, 4, 11, 12	5,7, 8, 10	0, 2, 6, 9	1	4
2	0, 4, 5, 12	6, 8, 9, 11	1, 3, 7, 10	2	8
3	0, 1, 5, 6	7, 9, 10, 12	2, 4, 8, 11	3	12
4	1, 2, 6, 7	0, 8, 10, 11	3, 5, 9, 12	4	3
5	2, 3, 7, 8	1, 9, 11, 12	0, 4, 6, 10	5	7
6	3, 4, 8, 9	0, 2, 10, 12	1, 5, 7, 11	6	11
7	4, 5, 9, 10	0, 1, 3, 11	2, 6, 8, 12	7	2
8	5, 6, 10, 11	1, 2, 4, 12	0, 3, 7, 9	8	6
9	6, 7, 11, 12	0, 2, 3, 5	1, 4, 8, 10	9	10
10	0, 7, 8, 12	1, 3, 4, 6	2, 5, 9, 11	10	1
11	0, 1, 8, 9	2, 4, 5, 7	3, 6, 10, 12	11	5
12	1, 2, 9, 10	3, 5, 6, 8	0, 4, 7, 11	12	9

Table 1 shows that if any element of F_{13} is removed, then the remaining 12 can be split into 3 groups of 4 with equal sums.

Main reference:

Mihai Caragiu and Rachael Harbaugh

Extending a Putnam Problem To Fields of Various Characteristics

JP Journal of Algebra, Number Theory and Applications Vol 59, 33 - 45 (November 2022)

Works cited in the main reference

- 34th Putnam 1973, in John Scholes's compiled list of Math problems. https://prase.cz/kalva/putnam/putn73.html (last time accessed November 9, 2022).
- [2] Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, 1976.
- [3] Ömer Eğecioğlu, A combinatorial generalization of a Putnam problem, Amer. Math. Monthly 99(3) (1992), 256-258.
- [4] David J. H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge University Press, Cambridge, New York, 2007.
- Hans Hermes, Introduction to Mathematical Logic, Springer, Universitext, 1973.
- [6] George F. McNulty, Elementary model theory, University of South Carolina Lecture Notes, 2016. Available online at https://people.math.sc.edu/mcnulty/762/modeltheory.pdf.
- [7] Svetoslav Savchev and Titu Andreescu, Mathematical miniatures, Anneli Lax New Mathematical Library, 43, American Mathematical Society, 2003.