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Putnam Exam

» The William Lowell Putnam Mathematical Competition is the leading
mathematics competition for undergraduate students in the United States and
Canada.

» The Putnam exams began in 1938 as a competition between mathematics
departments at different colleges.

» Set up:
» Two 3-hour sessions
> A1-A6
» B1-Bé




B1 from 1973

» Focusing on problem B1 from the 1973 Putnam Exam.
» B1 is usually easiest problem

» This year A1 and B1 were unusually difficult

B1. S is a finite collection of integers, not necessarily distinct. If any element of S is removed, then the remaining integers
can be divided into two collections with the same size and the same sum. Show that all elements of S are equal.




Introduction

» Among the Putnam exam problems that generated significant interest in the subsequent
years is the problem B1 from 1973 (“2n+1 problem” from here on):

» “Sis a finite collection of integers, not necessarily distinct. If any element of S is removed,
then the remaining integers can be divided into two collections with the same size and the
same sum. Show that all elements of S are equal.”

» It has been noticed and actually proved that the 2n+1 problem is still valid if the word
“integers” is replaced with “real numbers”.

» Inthe present article will prove a generalization of the above stated Putnam problem. Our
main result splits into m groups of n (compared to 2 groups of n as in the 2n+1 problem)
once any arbitrary set of  elements is removed (compared to one element as in the 2n+1
problem) and is valid over any field L of characteristic zero. The proof will be provided in
Section 2.




Generalization

Theorem1:Letm>2, n,r21,and N =mn+r.Ifx,x,,...,x, are elementsof a field L of
characteristic zero with the property that no matter which r of the x, ’s are removed the remaining mn

elementscan be split into m groups of size n withequal sums, thenx, = x, =...=x,,.




Counterexample in finite characteristic

Interestingly, we will see that a similar statement to thatin Theorem 1 generally fails in fields of prime
characteristic. Asa quick counterexample, if m = n =2and r =1, it can be seen that the elements
0,1,2,3,4 € F,have the property that no matter which one is removed, the remaining four can be split

into two groups of two with equal sums in the finite field F;. More explicitly, the possible splits are
{0} u{l,4} U{2,3}, {1} U{0,2} U{3,4}, {2} U{1,3} LU{0,4}, {3} U {2,4} U{0,1} and
{4}U{0,3} U{1,2}.




Proof of Theorem 1

In this section we will prove the validity of Theorem 1 (involving partitions into m groups of n when any
rof the x,’sare removed) over any field L of characteristic0, in other words any field that contains Q

as a subfield.
This will be done gradually over the ascending set of domainsNcZ cQc L.

CASE1: x,x,,...,X, are nonnegative integers. Then the proof will proceed by induction over the

maximum value M = max (x,,X,,...,Xy ). Let S =x +x, +...+x,.

But first, let us begin by noting that since the removalof any r of the x, s, say X3 X, 5eees X allows for

the split of the remaining mn elements x ,into m groups of n with equal sums, it follows that
(1) S—(x,.| +X, .+ X, ) =0(modm)

for all choices of r distinct indices i, i,,...,i, . From (1) we find that the sums X, +X, +...+x, modm of

any relements x out of x,Xx,,...,x, arethe same. The following Lemma would be essential in the
unfolding of the induction proof.




Concluding Case 1

Now that the Lemma is proved, the proof of Case 1 will be done by induction over the maximum value

M =max (x,,x,,...,Xy) -
If M = 0 thereis nothing to prove, since thenx, =x, =...=x, =0.Let M >0andlet p:=x modm -
the same forall i (0 < p <m—1). Thenit is easy to see that the elements
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of any r of the x,’s allows for the split of the remaining mn elements x; into m groups of n with equal

have the same property as x,, x,,..., x,,, in that the removal

sums. Here the assumption that the groups are equal in size is essential. Since max (xl' 3 Xy sy Xy ) <M,

the inductive hypothesis yields x] = x) =...=x},, and hence x, = x, =...= x,,.




CASE 2: x, x,,...,x,, € Z- This will be proved by areduction to Case 1. To that effect, let 4 bea positive

integer such that x/ = x, + 4,x; = x, + 4,...,X), = x,, + A are natural numbers. Clearly, x/,x;,..., X},

have the same property as x,, x,,..., X, in that the removal of any r of the x, ’sallows for the split of the
remaining mn elements x;. into m groups of p with equal sums. From Case 1, xl' = x; = .. = x:v, and

hencex, =x, =...=x,.

CASE 3: x,,X,,...,x,, € Q. This will be proved by a reduction to Case 2. To that effect, let B bean integer
’ ’ ’ . o

such that x; = Bx,, x, = Bx,,..., X, = Bx, areintegers having the property that the removal of any r of

the x,’s allows for the split of the remaining mn elements x; into m groups of n with equal sums. From

Qse 2' xl' =x; =ooo=x'N’ and hencexl =x2 =coo=xN'

CASE 4: x, x,,...,x, € L .This will be proved by a reduction to Case 3 by using the coordinates of



Finite Characteristic Case

We see that in finite characteristic, the “m groups of n” type of
statements such as the one proved in Theorem 1 for fields of characteristic
0, is not necessarily true. The following theorem provides a class of
counterexamples when mn +1 1s a prime p. Note that according to
Dirichlet’s Theorem for prime numbers in arithmetic progressions (see [2,
Chapter 7]), for every m = 2, there are infinitely many primes p such that

p =1 (modm), that is primes of the form p = mn +1.




Generalization

Theorem 2. Let m = 2, n =1 be integers and assume that p = mn + 1

is a prime. Let g be a primitive root modulo p. Consider the partition of
the finite prime field F),, = {0, 1, ..., p — 1} consisting of {0} and the m size

n cosets in F ; of the multiplicative group of the nonzero mth powers

{g™, g’ g - 1}
m-—1
{O}U U {gs+m’ gs+2m’ - gs+nm}. (5)
=0

Then the modular translations in F ) of the partition (5) cover all instances

in which an element of the set F, is removed, while the remaining mn

elements are split into m groups of n with equal sums. Thus they provide a
counterexample in characteristic p of the statement proved in Theorem 1 for

characteristic 0.




Example

Example. This is a practical, hands-on way to construct the
counterexample for small values of the parameters. Let m = 3, n = 4. Then

p =mn + 1 =13. As a primitive root modulo 13, we take g = 2.

Let us list the elements of Fy3 as powers of the primitive root 2:

K 1 2 3 4 |5 6 | 7 8 9 | 10 | 11 | 12

%mod13| 2| 4| 8|3 |6 |12l/11]9 |5 ]10]7]1

To get our 3 blocks of 4 upon the removal of 0, we take every third
element in the row of the powers (second row) of the above table, so the

three groups are
2,3,11, 10}, {4, 6, 9, 7}, and {8, 12, 5, 1}. (7)




Example cont.

Thus if we remove the element O out of Fj3, then the remaining 12 elements

can be split into the above 3 groups of 4 with equal sums (the equal sums are
zero in this case). What about removing other elements? Say, for example,
we remove 2 € Fj3. As indicated in the proof of Theorem 2, we add 2 to

each element of a block in (7). Therefore, if we remove the element 2 out of
Fi3, then the remaining 12 elements can be split into the following 3 groups

of size 4 with equal sums:

{4,5,0,12}, {6, 8,11, 9}, and {10, 1, 7, 3}.

As it is easy to see, the sum in each group is 8, which is consistent with
the previous construction given in Theorem 2 (na = 4-2 =8). Table 1

below displays an interesting combinatorial pattern, showing all partitions in
3 groups of size 4 occurring when each element of F3 is removed.




Element removed | Group 1 Group 2 Group 3 Shift | Sum per group
0 2,3,10, 11 4,6,7,9 1,5,8,12 0 0
1 3,4,11, 12 5,7, 8,10 0,2,6,9 1 4
2 0,4,5,12 6,8,9,11 1,3,7,10 2 8
3 0,1,5,6 7,9, 10, 12 2,4,8,11 3 12
4 1,2,6,7 0,8,10,11 3,5,9,12 4 3
5 2,3,7,8 1,9,11,12 0,4,6,10 5
6 3,4,8,9 0,2,10,12 1,5,7,11 6 11
7 4,5,9,10 0,1,3,11 2,6,8,12 7 2
8 5,6,10, 11 1,2,4,12 0,3,7,9 8 6
9 6,7, 11,12 0,2,3,5 1,4,8,10 9 10
10 0,7,8,12 1,3,4,6 2,5,9,11 10 1
11 0,1,8,9 2,4,5,7 3,6, 10, 12 11 5
12 1,2,9,10 3,5,6,8 0,4,7,11 12 9

Table 1 shows that if any element of Fj3 is removed, then the remaining

12 can be split into 3 groups of 4 with equal sums.
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