The Independence Coloring Game

What is a graph?

A graph is composed of points, called vertices, and lines, called edges. The collection of vertices and edges is called a graph.

What is a graph?

A graph is composed of points, called vertices, and lines, called edges. The collection of vertices and edges is called a graph.

What is a graph?

A graph is composed of points, called vertices, and lines, called edges. The collection of vertices and edges is called a graph.

What is graph coloring?

What is graph coloring?

Graph coloring is the process of selecting and labeling vertices through coloring. There are many forms of graph coloring, but we will focus on regular coloring (no two adjacent vertices will be colored in the final graph).

What is graph coloring?

Graph coloring is the process of selecting and labeling vertices through coloring. There are many forms of graph coloring, but we will focus on regular coloring (no two adjacent vertices will be colored in the final graph).

What is graph coloring?

Graph coloring is the process of selecting and labeling vertices through coloring. There are many forms of graph coloring, but we will focus on regular coloring (no two adjacent vertices will be colored in the final graph).

What is graph coloring?

Graph coloring is the process of selecting and labeling vertices through coloring. There are many forms of graph coloring, but we will focus on regular coloring (no two adjacent vertices will be colored in the final graph).

What is graph coloring?

Graph coloring is the process of selecting and labeling vertices through coloring. There are many forms of graph coloring, but we will focus on regular coloring (no two adjacent vertices will be colored in the final graph).

The Independence Coloring Game

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the

 final number of colored vertices.Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

The Independence Coloring Game

Minimizer's goal: Minimize the final number of colored vertices.

Maximizer's goal: Maximize the final number of colored vertices.

How can we mathematically
determine the most optimal move for
both Minimizer and Maximizer in the independence coloring game?

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs
Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $\mathrm{U}(\mathrm{v})$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $\mathrm{U}(\mathrm{v})$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $\mathrm{U}(\mathrm{v})$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $U(v)$ values for an uncolored vertex.

1. The $\mathrm{S}(\mathrm{u})$ value of a vertex includes the $\mathrm{U}(\mathrm{v})$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $\mathrm{U}(\mathrm{v})$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $U(v)$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 Graphs$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $U(v)$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $U(v)$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

S(u) value (underlined): Represents the sum of adjacent $U(v)$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $U(v)$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $U(v)$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $\mathrm{U}(\mathrm{v})$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

S(u) value (underlined): Represents the sum of adjacent $U(v)$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

S(u) value (underlined): Represents the sum of adjacent $\mathrm{U}(\mathrm{v})$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

$\mathbf{U}(\mathbf{v})$ value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.
S(u) value (underlined): Represents the sum of adjacent $\mathrm{U}(\mathrm{v})$ values for an uncolored vertex.

1. The $\underline{S(u)}$ value of a vertex includes the $U(v)$ value of the vertex itself in addition to the $U(v)$ values of its adjacent vertices.
2. The $U(v)$ value for unavailable vertex is 0 .

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive Graphs

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 GraphsStep 1: Find all vertices with the greatest S(u) value.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 GraphsStep 1: Find all vertices with the greatest S(u) value.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 GraphsStep 1: Find all vertices with the greatest S(u) value.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 GraphsStep 1: Find all vertices with the greatest S(u) value.

Step 2: From this subset, Minimizer then selects the vertex with the lowest $\mathrm{U}(\mathrm{v})$ value. If more than one vertex meets these criteria, Minimizer can randomly select any one of these vertices.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 GraphsStep 1: Find all vertices with the greatest S(u) value.

Step 2: From this subset, Minimizer then selects the vertex with the lowest $\mathrm{U}(\mathrm{v})$ value. If more than one vertex meets these criteria, Minimizer can randomly select any one of these vertices.

Minimizer's Optimal Game-Play Strategy for Vertex-Transitive

 GraphsStep 1: Find all vertices with the greatest S(u) value.

Step 2: From this subset, Minimizer then selects the vertex with the lowest $\mathrm{U}(\mathrm{v})$ value. If more than one vertex meets these criteria, Minimizer can randomly select any one of these vertices.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive

 Graphs
Maximizer's Optimal Game-Play Strategy for Vertex Transitive

 Graphs

Maximizer's Optimal Game-Play Strategy for Vertex Transitive

 Graphs

Maximizer's Optimal Game-Play Strategy for Vertex Transitive

 Graphs

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Maximizer's Optimal Game-Play Strategy for Vertex Transitive

 GraphsStep 1: Find all vertices with the lowest S(u) value.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive

 GraphsStep 1: Find all vertices with the lowest S(u) value.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive

 GraphsStep 1: Find all vertices with the lowest S(u) value.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Step 1: Find all vertices with the lowest S(u) value.

Step 2: From this subset, Maximizer then selects the vertex with the greatest $U(v)$ value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Step 1: Find all vertices with the lowest S(u) value.

Step 2: From this subset, Maximizer then selects the vertex with the greatest $U(v)$ value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Step 1: Find all vertices with the lowest S(u) value.

Step 2: From this subset, Maximizer then selects the vertex with the greatest $U(v)$ value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Step 1: Find all vertices with the lowest S(u) value.

Step 2: From this subset, Maximizer then selects the vertex with the greatest $U(v)$ value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Step 1: Find all vertices with the lowest S(u) value.

Step 2: From this subset, Maximizer then selects the vertex with the greatest $U(v)$ value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Step 1: Find all vertices with the lowest S(u) value.

Step 2: From this subset, Maximizer then selects the vertex with the greatest $U(v)$ value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Step 1: Find all vertices with the lowest S(u) value.

Step 2: From this subset, Maximizer then selects the vertex with the greatest $U(v)$ value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Maximizer's Optimal Game-Play Strategy for Vertex Transitive Graphs

Step 1: Find all vertices with the lowest S(u) value.

Step 2: From this subset, Maximizer then selects the vertex with the greatest $U(v)$ value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.
*The game-play strategies for Minimizer and Maximizer are developed for vertex-transitive graphs with a radius ≤ 3.

An Extra Example

An Extra Example

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{\mathrm{S}(\mathrm{u}) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{\mathrm{S}(\mathrm{u}) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) v a l u e}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) v a l u e}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{\mathrm{S}(\mathrm{u}) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) v a l u e}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) v a l u e}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) v a l u e}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) \text { value }}$
(2) Greatest U(v) value

An Extra Example

Minimizer:

(1) Greatest $\mathrm{S}(\mathrm{u})$ value
(2) Lowest $U(v)$ value

Maximizer:

(1) Lowest $\underline{S(u) v a l u e}$
(2) Greatest U(v) value

