What is a graph?

A graph is composed of points, called vertices, and lines, called edges. The collection of vertices and edges is called a graph.

What is a graph?

A graph is composed of points, called **vertices**, and lines, called edges. The collection of vertices and edges is called a graph.

What is a graph?

A graph is composed of points, called vertices, and lines, called **edges**. The collection of vertices and edges is called a **graph**.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

Minimizer's goal: Minimize the final number of colored vertices.

How can we mathematically determine the most optimal move for both Minimizer and Maximizer in the independence coloring game?

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

U(v) value: Represents the number of adjacent, unavailable (colored or adjacent to a colored vertex) vertices for an uncolored vertex.

- 1. The <u>S(u) value</u> of a vertex includes the U(v) value of the vertex itself in addition to the U(v) values of its adjacent vertices.
- 2. The U(v) value for unavailable vertex is 0.

Step 1: Find all vertices with the **greatest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **greatest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **greatest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **greatest** <u>S(u) value</u>.

Step 2: From this subset, Minimizer then selects the vertex with the **lowest** U(v) value. If more than one vertex meets these criteria, Minimizer can randomly select any one of these vertices.

Step 1: Find all vertices with the **greatest** <u>S(u) value</u>.

Step 2: From this subset, Minimizer then selects the vertex with the **lowest** U(v) value. If more than one vertex meets these criteria, Minimizer can randomly select any one of these vertices.

Step 1: Find all vertices with the **greatest** <u>S(u) value</u>.

Step 2: From this subset, Minimizer then selects the vertex with the **lowest** U(v) value. If more than one vertex meets these criteria, Minimizer can randomly select any one of these vertices.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 2: From this subset, Maximizer then selects the vertex with the **greatest** U(v) value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 2: From this subset, Maximizer then selects the vertex with the **greatest** U(v) value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 2: From this subset, Maximizer then selects the vertex with the **greatest** U(v) value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 1: Find all vertices with the **lowest** $\underline{S(u)}$ value.

Step 2: From this subset, Maximizer then selects the vertex with the **greatest** U(v) value. If more than one vertex meets these criteria, Maximizer can randomly select any one of these vertices.

*The game-play strategies for Minimizer and Maximizer are developed for vertex-transitive graphs with a radius ≤ 3 .

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

Minimizer:

(1) Greatest <u>S(u) value</u>(2) Lowest U(v) value

Maximizer:

