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Definition: Proper Edge-Coloring

A Proper j-Edge-Coloring of a graph G is an assignment of the
colors {11, 12, ..., 1j} to each edge in G such that

▶ incident edges receive distinct colors

Non-Example Example
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Definition: Strong Edge-Coloring

A Strong k-Edge-Coloring of a graph G is an assignment of
colors {21, 22, ..., 2k} to each edge in G such that

▶ incident edges receive distinct colors

▶ any two edges that are incident to a common third edge
receive distinct colors

Non-Example Example



Definition: Strong Edge-Coloring

A Strong k-Edge-Coloring of a graph G is an assignment of
colors {21, 22, ..., 2k} to each edge in G such that

▶ incident edges receive distinct colors

▶ any two edges that are incident to a common third edge
receive distinct colors

Non-Example Example



Definition: Strong Edge-Coloring
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Erdős-Nešeťril Conjecture (1985)

If a graph has maximum degree ∆ then it has a strong
edge-coloring with at most

▶ 5
4∆

2 − 1
2∆+ 1

4 (when ∆ is odd)

▶ 5
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2 (when ∆ is even)

colors.



Definition: Packing Edge-Coloring

A (1j, 2k)-Packing Edge-Coloring of a graph G is an assignment
of the colors {11, 12, ..., 1j} and {21, 22, ..., 2k} to the edges in G
such that

▶ incident edges receive distinct colors

▶ any two edges colored 2i for the same 1 ≤ i ≤ k are not
incident to a common edge.

Simply put:

▶ “1 colors” behave like proper colors

▶ “2 colors” behave like strong colors



(11, 24)-Packing Edge-Coloring Example



Connection to Erdős-Nešeťril Conjecture

Erdős-Nešeťril Conjecture (1985)

If a graph has maximum degree ∆ then it has a strong
edge-coloring with at most

▶ 5
4∆

2 − 1
2∆+ 1

4 (when ∆ is odd)

▶ 5
4∆

2 (when ∆ is even)

colors.

The Erdős-Nešeťril Conjecture has been proven for ∆ ≤ 3

Let G be a graph with ∆(G ) = 4

▶ The conjecture posits a strong 20-edge-coloring of G exist.

▶ It has been proven that a strong 21-edge-coloring of G exists.

▶ This guarantees the existence of a (11, 220)-packing
edge-coloring of G.

Can we guarantee a (11, 219)-packing edge-coloring of G?
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Main Result

Every graph G with ∆ ≤ 4 has a (11, 219)-packing edge-coloring
such that the 1-color only appears on edges whose endpoints are
both vertices of degree 4.

▶ Implies the weaker claim that if ∆(G ) ≤ 4, G has a
(11, 219)-packing edge-coloring.



Minimal Counterexample Proof Structure

▶ For a contradiction, assume H is a smallest counterexample to
the main result.

▶ We show H has no vertices of degree 1, 2, or 3 and no cycles
of length 3, 4, or 5.

▶ Finally we use a modified Greedy Algorithm to show H has
(11, 219)-packing edge-coloring with the condition on the
placement of the 1-color, so no such counterexample can exist.



H has no vertices of degree 1



H has no vertices of degree 1

▶ Delete the vertex v to form a new graph H’.



H has no vertices of degree 1

▶ Now, add v back in to the graph.



H has no vertices of degree 2



H has no vertices of degree 3



H has no cycles of length 3, 4, or 5



Finishing the Proof



Other Results and Possible Questions

▶ We have also proved that every graph with ∆ ≤ 4 has a
(12, 217)-packing edge-coloring such that a 1-color only
appears on edges whose endpoints are both vertices of degree
4.

▶ We are in the process of showing that every class 1 graph with
∆ ≤ 4 has a (13, 26)-packing edge-coloring.

▶ Additional Question: What is the smallest k such that every
graph with ∆ ≤ 4 is has a (11, 2k)-packing edge-coloring?
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