Complementation of Subquandles

Meghan Lee
Occidental College

Advisor: Dr. David Yetter
Kansas State University

January 21, 2023
Definition

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)
Definition

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)

Q1. Idempotence: $x \triangleright x = x$,
Definition

A quandle is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$:

1. **Idempotence:** $x \triangleright x = x$,
2. **Inversion:** $(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$,
3. **Distributivity:** $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

$Q' \subseteq Q$ is a subquandle of Q if it is closed under \triangleright and \triangleright^{-1}. Subquandles are denoted as $Q' \trianglelefteq Q$ or $Q' \vartriangleleft Q$.
Preliminary Definitions

Definition

A quandle is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)

Q1. Idempotence: $x \triangleright x = x$,

Q2. Inversion: $(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$,

Q3. Distributivity: $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.
Preliminary Definitions

Definition

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)

1. **Idempotence:** $x \triangleright x = x$,
2. **Inversion:** $(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$,
3. **Distributivity:** $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

$Q' \subseteq Q$ is a **subquandle** of Q if it closed under \triangleright and \triangleright^{-1}. Subquandles are denoted as $Q' \leq Q$ or $Q' \prec Q$.
Example

The **Tait quandle** \((T_3, \triangleright)\) with underlying set \(\{1, 2, 3\}\) has the following multiplication table:

<table>
<thead>
<tr>
<th>(\triangleright)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Example

Let \(G \) be a group. \(\text{Conj}(G) \) is called the **conjugacy quandle** of a group, constructed by elements in \(G \) with the binary operation being defined for all \(g, h \in G \) as:

\[
g \triangleright h = g^{-1}hg.
\]
Example

Let A be an abelian group, and let us define $x \triangleright_{\text{dih}} y = 2y - x$ for any $x, y \in A$. Then $(A, \triangleright_{\text{dih}})$ forms a quandle called the Takasaki quandle, $T(A)$.

The operation $\triangleright_{\text{dih}}$ of $T(A)$ is called the dihedral action.

Note that for $T(A)$, $(x \triangleright_{\text{dih}} y) \triangleright_{\text{dih}} y = x$ for all $x, y \in A$. This gives that $\triangleright_{\text{dih}} = \triangleright^{-1}_{\text{dih}}$, and that $T(A)$ is associative.
Motivations

- Knot theory!
- Quandles encode a complete invariant for classical knots, up to orientation reversal.
- Each quandle axiom corresponds to each Reidemeister move.
Motivations
Motivations
Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations

Motivations
Set-Theoretic Complementation

Definition

A subquandle $Q' \leq Q$ is strongly complemented if $Q \setminus Q' \leq Q$.
Set-Theoretic Complementation

Definition

A subquandle $Q' \precsim Q$ is **strongly complemented** if $Q \setminus Q' \precsim Q$.

Example

In the quandle Q represented by the matrix

$$M_Q = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 2 \\ 2 & 3 & 3 \end{bmatrix},$$

the subquandles

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}, [1]$$

are strongly complemented.
Complete Classification of Strong Complementation

Theorem

Let \(Q \) be a quandle, and let \(Q' \preceq Q \). Denote the subquandle lattice of \(Q \) by \(\mathcal{L}(Q) \). The following are equivalent:

- \(Q \backslash Q' \preceq Q \),
- \(Q' \) is a union of orbits under the action of \(\text{Inn}(Q) \) on \(Q \),
- \(Q' \) is a fixed point of the action of \(\text{Inn}(Q) \) on \(\mathcal{L}(Q) \),
- \(Q = #(Q', Q \backslash Q', M) \) for a mesh \(M \) as constructed in the Orbit Decomposition Theorem of Ehrman et al. (2).
Complete Classification of Strong Complementation

Theorem

Let Q be a quandle, and let $Q' \preceq Q$. Denote the subquandle lattice of Q by $\mathcal{L}(Q)$. The following are equivalent:

- $Q \setminus Q' \preceq Q$,
- Q' is a union of orbits under the action of $\text{Inn}(Q)$ on Q,
- Q' is a fixed point of the action of $\text{Inn}(Q)$ on $\mathcal{L}(Q)$,
- $Q = \#(Q', Q \setminus Q', M)$ for a mesh M as constructed in the Orbit Decomposition Theorem of Ehrman et al. (2)
Definition

The set of subquandles of any quandle \(Q \) under inclusion forms a lattice \((3)\), which we denote as \(\mathcal{L}(Q) \).

Definition

Given two subquandles \(Q_1, Q_2 \preceq Q \), their meet is \(Q_1 \land Q_2 = Q_1 \cap Q_2 \) and their join is \(Q_1 \lor Q_2 = \langle \langle Q_1 \cup Q_2 \rangle \rangle \).
Definition
The set of subquandles of any quandle Q under inclusion forms a lattice (3), which we denote as $\mathcal{L}(Q)$.

Definition
Given two subquandles $Q_1, Q_2 \leq Q$, their meet is $Q_1 \wedge Q_2 = Q_1 \cap Q_2$ and their join is $Q_1 \vee Q_2 = \langle\langle Q_1 \cup Q_2\rangle\rangle$.

Definition (Complemented Subquandle Lattices)
$Q_1 \leq Q$ is complemented in Q if there is some $Q_2 \leq Q$ such that $Q_1 \wedge Q_2 = \emptyset$, and $Q_1 \vee Q_2 = Q$. The subquandle lattice $\mathcal{L}(Q)$ is complemented if every subquandle is complemented.
Complemented Sublattice Examples

Example

All finite quandles have a complemented subquandle lattice. \[(3)\]
Complemented Sublattice Examples

Example
All finite quandles have a complemented subquandle lattice. [(3)

Example
\((\mathbb{Q}, \triangleright_{\text{dih}})\) does not have a complemented subquandle lattice. In particular, \(\{0\}\) has no complement. (3)
Complemented Sublattice Examples

Example
All finite quandles have a complemented subquandle lattice. [(3)]

Example
\((\mathbb{Q}, \triangleright_{\text{dih}})\) does not have a complemented subquandle lattice. In particular, \(\{0\}\) has no complement. (3)

Example
\(\mathbb{Q}/\mathbb{Z}\) does not have a complemented subquandle lattice. In particular, \(\{\mathbb{Z}\}\) has no complement.
Acknowledgments

This research was conducted at Kansas State University’s Summer Undergraduate Mathematics Research (SUMaR) program, a NSF-funded REU site, under the mentorship of Dr. David Yetter. Special thanks to the:

- National Science Foundation (DMS-1659123)
- Kansas State University Department of Math
- Occidental College Department of Math
- Nebraska Conference for Undergraduate Women in Math Organizers

as well as Dr. Yetter and my REU collaborators: Kieran Amsberry (Benedictine College), August Bergquist (Willamette University), and Thomas Horstkamp (Carnegie Mellon University).
References

Thank you for listening!

Questions?

Meghan Lee - mlee3@oxy.edu
Thomas Horstka - thorstka@andrew.cmu.edu
August Bergquist - ajbergquist@willamette.edu
Kieran Amsberry - kieran.amsberry@gmail.com
Additional Slides
Definitions for Group Action of $\text{Inn}(Q)$

Definition

If (Q, \triangleright) and (R, \triangleright_1) are quandles, a **quandle homomorphism** $f : Q \to R$ is a function satisfying $f(a \triangleright b) = f(a) \triangleright_1 f(b)$ for every $a, b \in Q$. A bijective quandle homomorphism is a **quandle isomorphism**. A quandle isomorphism with equal domain and codomain is a **quandle automorphism**. The quandle automorphisms form the **automorphism group** $\text{Aut}(Q)$.

Definition

Given a quandle Q and an element $y \in Q$, the **symmetry at y** is the automorphism of Q of the form $S_y : x \mapsto x \triangleright y$.

The **inner automorphism group** of Q is defined as $\text{Inn}(Q) = \langle \{ S_q \mid q \in Q \} \rangle$. Note that $\text{Inn}(Q) \trianglelefteq \text{Aut}(Q)$.
Definitions for Group Action of Inn(Q)

Definition

- If $(Q, ▷)$ and $(R, ▷_1)$ are quandles, a **quandle homomorphism** $f : Q \to R$ is a function satisfying $f(a ▷ b) = f(a) ▷_1 f(b)$ for every $a, b \in Q$.
- A bijective quandle homomorphism is a **quandle isomorphism**.

Note that $\text{Inn}(Q) \triangleleft \text{Aut}(Q)$.
Definitions for Group Action of Inn\((Q)\)

Definition

- If \((Q, \triangleright)\) and \((R, \triangleright_1)\) are quandles, a **quandle homomorphism** \(f : Q \rightarrow R\) is a function satisfying \(f(a \triangleright b) = f(a) \triangleright_1 f(b)\) for every \(a, b \in Q\).
- A bijective quandle homomorphism is a **quandle isomorphism**.
- A quandle isomorphism with equal domain and codomain is a **quandle automorphism**.

The quandle automorphisms form the **automorphism group** \(\text{Aut}(Q)\).

Definition

Given a quandle \(Q\) and an element \(y \in Q\), the **symmetry** at \(y\) is the automorphism of \(Q\) of the form \(S_y : x \mapsto x \triangleright y\).

The **inner automorphism group** of \(Q\) is defined as \(\text{Inn}(Q) = \langle \{S_q \mid q \in Q\} \rangle\).

Note that \(\text{Inn}(Q) \trianglelefteq \text{Aut}(Q)\).
Definitions for Group Action of \(\text{Inn}(Q) \)

Definition

- If \((Q, \triangleright)\) and \((R, \triangleright_1)\) are quandles, a **quandle homomorphism** \(f : Q \to R \) is a function satisfying \(f(a \triangleright b) = f(a) \triangleright_1 f(b) \) for every \(a, b \in Q \).
- A bijective quandle homomorphism is a **quandle isomorphism**.
- A quandle isomorphism with equal domain and codomain is a **quandle automorphism**.
- The quandle automorphisms form the **automorphism group** \(\text{Aut}(Q) \).

Definition

Given a quandle \(Q \) and an element \(y \in Q \), the **symmetry** at \(y \) is the automorphism of \(Q \) of the form \(S_y : x \mapsto x \triangleright y \).

The **inner automorphism group** of \(Q \) is defined \(\text{Inn}(Q) = \langle \{ S_q \mid q \in Q \} \rangle \). Note that \(\text{Inn}(Q) \leq \text{Aut}(Q) \) (1).
The action of $\text{Inn}(Q)$ on Q by functional application.

This action allows us to construct an action of $\text{Inn}(Q)$ upon $\mathcal{L}(Q)$.

Definition

The action of $\text{Inn}(Q)$ on Q' is also given by functional application, denoted $Q' \cdot \text{Inn}(Q)$.

The action of $\text{Inn}(Q)$ upon $\mathcal{L}(Q)$ is defined $Q'\sigma = \sigma(Q')$ for all $Q' \in \mathcal{L}(Q)$, and for all $\sigma \in \text{Inn}(Q)$. The orbit of Q' under this action is denoted by $\left[Q'\right] \cdot \text{Inn}(Q) = \{Q'\sigma : \sigma \in \text{Inn}(Q)\}$.
Definitions for Orbit Decomposition

Definition (Orbit)
The orbit of an element $s \in Q$ is the subset of elements $t \in Q$ such that there exists some $p \in \text{Inn}(Q)$ where p maps s to t.
Semidisjoint Union

Definition (Ehrman et al.)

Given a sequence of quandles Q_1, \ldots, Q_n and a $n \times n$ matrix of group homomorphisms $(M)_{ij} = g_{ij}$, Ehrman et al. (2) defined the semidisjoint union as follows:

\[
\#(Q_1, \ldots, Q_n, M) = \left(\bigsqcup_{i=1}^{n} Q_i, \triangleright \right).
\]
Semidisjoint Union

Definition (Ehrman et al.)
Given a sequence of quandles \(Q_1, \ldots, Q_n\) and a \(nxn\) matrix of group homomorphisms \((M)_{ij} = g_{ij}\), Ehrman et al. (2) defined the semidisjoint union as follows:

\[
\#(Q_1, \ldots, Q_n, M) = \left(\bigcup_{i=1}^{n} Q_i, \triangleright \right).
\]

- Each entry of the matrix \(g_{ij} : \text{Adconj}(Q_i) \rightarrow \text{Aut}(Q_j)\) is a group homomorphism.
- \(\triangleright\) is defined as \(x \triangleright y = x \cdot g_{ij}(|y|_{Q_i})\) for \(x \in Q_i\) and \(y \in Q_j\).
- Note that we are not guaranteed that the semidisjoint union is a quandle. If the matrix \(M\) gives rise to a quandle, it is called a mesh.
- Ehrman et al. provided a necessary and sufficient condition for \(M\) to be a mesh.
Theorem (Ehrman et al.)

Let \(Q \) be a quandle, and let \(Q_1, \ldots, Q_n \) be its orbits under the inner automorphism group. Then we can construct a mesh \(M \) such that

\[
Q = \#(Q_1, \ldots, Q_n, M).
\]

- Note that the orbits need not be connected. Hence the orbits themselves may be decomposable via the previous theorem.
Theorem

Suppose Q is a quandle, with subquandles $Q'' \leq Q' \leq Q$, such that Q'' is strongly complemented within Q', while Q' is strongly complemented within Q. Then Q'' is complemented within Q by the subquandle $Q \setminus Q'' \cdot \text{Inn}(Q)$.
We consider the dual to ind-finite quandles:

A quandle Q is **profinite** if it is the inverse limit of an inverse system composed of a family of finite quandles and their morphisms.

We proved profinite quandles are quandles under coordinatewise operations.

We proved profinite abelian groups are profinite Takasaki quandles $(x \triangleright y = 2y - x)$ under coordinatewise operations.

Are the sublattices of profinite quandles complemented? Or does there exist a non-complemented profinite quandle?
Correspondence Between Quandle Axioms and Reidemeister Moves

R1

\[\begin{align*}
\text{idempotence} \\
\end{align*} \]

R2

\[\begin{align*}
\text{right-inversive} \\
\end{align*} \]

R3

\[\begin{align*}
\text{right-distributive} \\
\end{align*} \]