Complementation of Subquandles

Meghan Lee Occidental College

Advisor: Dr. David Yetter Kansas State University

January 21, 2023

Meghan Lee

Complementation of Subquandles

January 21, 2023

< □ > < □ > < □ > < □ > < □ >

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)

(日) (四) (日) (日) (日)

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)

Q1. Idempotence: $x \triangleright x = x$,

2/25

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)

- Q1. Idempotence: $x \triangleright x = x$,
- Q2. Inversion: $(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$,

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)

- Q1. Idempotence: $x \triangleright x = x$,
- Q2. Inversion: $(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$,
- Q3. Distributivity: $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

2/25

A **quandle** is a set Q equipped with binary operations \triangleright and \triangleright^{-1} satisfying the following for all $x, y, z \in Q$: (1)

Q1. Idempotence:
$$x \triangleright x = x$$
,

Q2. Inversion:
$$(x \triangleright y) \triangleright^{-1} y = x = (x \triangleright^{-1} y) \triangleright y$$
,

Q3. Distributivity:
$$(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$$
.

 $Q' \subseteq Q$ is a **subquandle** of Q if it closed under \triangleright and \triangleright^{-1} . Subquandles are denoted as $Q' \preccurlyeq Q$ or $Q' \prec Q$.

2/25

Example

The Tait quandle (\mathbf{T}_3, \rhd) with underlying set $\{1,2,3\}$ has the following multiplication table:

\triangleright	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

Meghan Lee

< □ > < □ > < □ > < □ > < □ >

Example

Let G be a group. Conj(G) is called the **conjugacy quandl**e of a group, constructed by elements in G with the binary operation being defined for all $g, h \in G$ as:

$$g \triangleright h = g^{-1}hg.$$

Example

Let A be an abelian group, and let us define $x \triangleright_{dih} y = 2y - x$ for any $x, y \in A$. Then $(A, \triangleright_{dih})$ forms a quandle called the **Takasaki quandle**, T(A).

The operation \rhd_{dih} of T(A) is called the *dihedral action*.

Note that for T(A), $(x \rhd_{dih} y) \rhd_{dih} y = x$ for all $x, y \in A$. This gives that $\bowtie_{dih} = \bowtie_{dih}^{-1}$, and that T(A) is associative.

5/25

- Knot theory!
- Quandles encode a complete invariant for classical knots, up to orientation reversal.
- Each quandle axiom corresponds to each Reidemeister move.

æ

Meghan Lee

メロト メロト メヨト メヨト

æ

Meghan Lee

Complementation of Subquandles

January 21, 2023

メロト メロト メヨト メヨト

2

Meghan Lee

Complementation of Subquandles

January 21, 2023

< □ > < □ > < □ > < □ > < □ >

Set-Theoretic Complementation

Definition

A subquandle $Q' \preccurlyeq Q$ is strongly complemented if $Q \setminus Q' \preccurlyeq Q$.

Meghan Lee

Complementation of Subquandles

January 21, 2023

イロン イロン イヨン イヨン

Set-Theoretic Complementation

Definition

A subquandle $Q' \preccurlyeq Q$ is strongly complemented if $Q \setminus Q' \preccurlyeq Q$.

Example

In the quandle ${\boldsymbol{Q}}$ represented by the matrix

$$M_Q = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 2 \\ 2 & 3 & 3 \end{bmatrix},$$

the subquandles

$$\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}, \begin{bmatrix} 1 \end{bmatrix}$$

are strongly complemented.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Complete Classification of Strong Complementation

Theorem

Let Q be a quandle, and let $Q' \preccurlyeq Q$. Denote the subquandle lattice of Q by $\mathcal{L}(Q)$. The following are equivalent:

11/25

Image: A matching of the second se

Complete Classification of Strong Complementation

Theorem

Let Q be a quandle, and let $Q' \preccurlyeq Q$. Denote the subquandle lattice of Q by $\mathcal{L}(Q)$. The following are equivalent:

- $Q \setminus Q' \preccurlyeq Q$,
- Q' is a union of orbits under the action of Inn(Q) on Q,
- Q' is a fixed point of the action of Inn(Q) on $\mathcal{L}(Q)$,
- $Q = #(Q', Q \setminus Q', M)$ for a mesh M as constructed in the Orbit Decomposition Theorem of Ehrman et al. (2)

• • • • • • • • • • •

Subquandle Lattice Complementation

Definition

The set of subquandles of any quandle Q under inclusion forms a **lattice** (3), which we denote as $\mathcal{L}(Q)$.

Definition

Given two subquandles $Q_1, Q_2 \preccurlyeq Q$, their **meet** is $Q_1 \land Q_2 = Q_1 \cap Q_2$ and their **join** is $Q_1 \lor Q_2 = \langle \langle Q_1 \cup Q_2 \rangle \rangle$.

12/25

• • • • • • • • • • •

Subquandle Lattice Complementation

Definition

The set of subquandles of any quandle Q under inclusion forms a **lattice** (3), which we denote as $\mathcal{L}(Q)$.

Definition

Given two subquandles $Q_1, Q_2 \preccurlyeq Q$, their **meet** is $Q_1 \land Q_2 = Q_1 \cap Q_2$ and their **join** is $Q_1 \lor Q_2 = \langle \langle Q_1 \cup Q_2 \rangle \rangle$.

Definition (Complemented Subquandle Lattices)

 $Q_1 \preccurlyeq Q$ is **complemented** in Q if there is some $Q_2 \preccurlyeq Q$ such that $Q_1 \land Q_2 = \emptyset$, and $Q_1 \lor Q_2 = Q$. The subquandle lattice $\mathcal{L}(Q)$ is complemented if every subquandle is complemented.

12/25

Complemented Sublattice Examples

Example

All finite quandles have a complemented subquandle lattice. [(3)

13/25

< □ > < □ > < □ > < □ > < □ >

Complemented Sublattice Examples

Example

All finite quandles have a complemented subquandle lattice. [(3)

Example

 (\mathbb{Q},\rhd_{dih}) does not have a complemented subquandle lattice. In particular, $\{0\}$ has no complement. (3)

13/25

Image: A matching of the second se

Complemented Sublattice Examples

Example

All finite quandles have a complemented subquandle lattice. [(3)

Example

 (\mathbb{Q},\rhd_{dih}) does not have a complemented subquandle lattice. In particular, $\{0\}$ has no complement. (3)

Example

 \mathbb{Q}/\mathbb{Z} does not have a complemented subquandle lattice. In particular, $\{\mathbb{Z}\}$ has no complement.

Image: A matching of the second se

This research was conducted at Kansas State University's Summer Undergraduate Mathematics Research (SUMaR) program, a NSF-funded REU site, under the mentorship of Dr. David Yetter. Special thanks to the:

- National Science Foundation (DMS-1659123)
- Kansas State University Department of Math
- Occidental College Department of Math
- Nebraska Conference for Undergraduate Women in Math Organizers

as well as Dr. Yetter and my REU collaborators: Kieran Amsberry (Benedictine College), August Bergquist (Willamette University), and Thomas Horstkamp (Carnegie Mellon University).

14/25

イロト イヨト イヨト

- [1] David, Joyce. "A classifying invariant of knots, the knot quandle." *Journal of Pure and Applied Algebra*, vol. 23, pp. 37-65, 1982.
- [2] G. Ehrman, A. Gurpinar, M. Thibault, D.N. Yetter. "Toward a classification of finite quandles." *Journal of Knot Theory and Its Ramifications*, vol. 17, pp. 511-520, 2008.
- [3] A. Saki and D. Kiani, "Complemented Lattices of Subracks." Journal of Algebraic Combinatorics, vol. 53, pp. 455-468, 2021.

15/25

Thank you for listening! Questions?

Meghan Lee - mlee3@oxy.edu Thomas Horstkamp - thorstka@andrew.cmu.edu August Bergquist - ajbergquist@willamette.edu Kieran Amsberrgy - kieran.amsberry@gmail.com

Meghan Lee

Complementation of Subquandles

January 21, 2023

< □ > < 同 > < 回 > < 回 >

Additional Slides

2

Meghan Lee

Complementation of Subquandles

January 21, 2023

メロト メタト メヨト メヨト

Definition

• If (Q, \triangleright) and (R, \triangleright_1) are quandles, a **quandle homomorphism** $f: Q \to R$ is a function satisfying $f(a \triangleright b) = f(a) \triangleright_1 f(b)$ for every $a, b \in Q$.

Definition

- If (Q, \triangleright) and (R, \triangleright_1) are quandles, a **quandle homomorphism** $f: Q \to R$ is a function satisfying $f(a \triangleright b) = f(a) \triangleright_1 f(b)$ for every $a, b \in Q$.
- A bijective quandle homomorphism is a quandle isomorphism.

18 / 25

Definition

- If (Q, \rhd) and (R, \rhd_1) are quandles, a **quandle homomorphism** $f: Q \to R$ is a function satisfying $f(a \rhd b) = f(a) \rhd_1 f(b)$ for every $a, b \in Q$.
- A bijective quandle homomorphism is a quandle isomorphism.
- A quandle isomorphism with equal domain and codomain is a **quandle automorphism**.

18 / 25

Definition

- If (Q, \rhd) and (R, \rhd_1) are quandles, a **quandle homomorphism** $f: Q \to R$ is a function satisfying $f(a \rhd b) = f(a) \rhd_1 f(b)$ for every $a, b \in Q$.
- A bijective quandle homomorphism is a quandle isomorphism.
- A quandle isomorphism with equal domain and codomain is a **quandle automorphism**.
- The quandle automorphisms form the automorphism group, $\operatorname{Aut}(Q).$

Definition

Given a quandle Q and an element $y \in Q$, the **symmetry** at y is the automorphism of Q of the form $S_y : x \mapsto x \triangleright y$.

The inner automorphism group of Q is defined $\operatorname{Inn}(Q) = \langle \{S_q \mid q \in Q\} \rangle$. Note that $\operatorname{Inn}(Q) \trianglelefteq \operatorname{Aut}(Q)$ (1).

Action of Inn(Q) cont.

- $\bullet~{\rm Inn}(Q)$ acts on Q by functional application.
- This action allows us to construct an action of Inn(Q) upon $\mathcal{L}(Q)$.

Definition

The action of ${\rm Inn}(Q)$ on Q' is also given by functional application, denoted $Q'\cdot{\rm Inn}(Q).$

The action of $\operatorname{Inn}(Q)$ upon $\mathcal{L}(Q)$ is defined $Q'\sigma = \sigma(Q')$ for all $Q' \in \mathcal{L}(Q)$, and for all $\sigma \in \operatorname{Inn}(Q)$. The orbit of Q' under this action is denoted by $[Q'] \cdot \operatorname{Inn}(Q) = \{Q'\sigma : \sigma \in \operatorname{Inn}(Q)\}.$

19/25

(日) (同) (日) (日)

Definitions for Orbit Decomposition

Definition (Orbit)

The orbit of an element $s \in Q$ is the subset of elements $t \in Q$ such that there exists some $p \in Inn(Q)$ where p maps s to t.

20 / 25

(日) (同) (日) (日)

Semidisjoint Union

Definition (Ehrman et al.)

Given a sequence of quandles Q_1, \ldots, Q_n and a nxn matrix of group homomorphisms $(M)_{ij} = g_{ij}$; Ehrman et al. (2) defined the **semidisjoint union** as follows:

$$#(Q_1,\ldots,Q_n,M) = \Big(\prod_{i=1}^n Q_i,\vartriangleright\Big).$$

21/25

Semidisjoint Union

Definition (Ehrman et al.)

Given a sequence of quandles Q_1, \ldots, Q_n and a nxn matrix of group homomorphisms $(M)_{ij} = g_{ij}$; Ehrman et al. (2) defined the **semidisjoint union** as follows:

$$#(Q_1,\ldots,Q_n,M) = \Big(\coprod_{i=1}^n Q_i, \rhd\Big).$$

- Each entry of the matrix g_{ij} : Adconj(Q_i) → Aut(Q_j) is a group homomorphism.
- \triangleright is defined as $x \triangleright y = x \cdot g_{ij}(|y|_{Q_i})$ for $x \in Q_i$ and $y \in Q_j$.
- Note that we are not guaranteed that the semidisjoint union is a quandle. If the matrix M gives rise to a quandle, it is called a **mesh**.
- Ehrman et al. provided a necessary and sufficient condition for M to be a mesh.

Theorem (Ehrman et al.)

Let Q be a quandle, and let Q_1, \ldots, Q_n be its orbits under the inner automorphism group. Then we can construct a mesh M such that

$$Q = \#(Q_1, \ldots, Q_n, M).$$

• Note that the orbits need not be connected. Hence the orbits themselves may be decomposable via the previous theorem.

22 / 25

Image: A matching of the second se

Partial Transitivity Criterion for Strong Complementedness

Theorem

Suppose Q is a quandle, with subquandles $Q'' \preccurlyeq Q' \preccurlyeq Q$, such that Q'' is strongly complemented within Q', while Q' is strongly complemented within Q. Then Q'' is complemented within Q by the subquandle $Q \setminus Q'' \cdot \operatorname{Inn}(Q)$.

23 / 25

- We consider the dual to ind-finite quandles:
- A quandle Q is **profinite** it is the inverse limit of an inverse system composed of a family of finite quandles and their morphisms.
- We proved profinite quandles are quandles under coordinatewise operations.
- We proved profinite abelian groups are profinite Takasaki quandles $(x \triangleright y = 2y x)$ under coordinatewise operations.
- Are the sublattices of profinite quandles complemented? Or does there exist a non-complemented profinite quandle?

24 / 25

Correspondence Between Quandle Axioms and Reidemeister Moves

25 / 25

Meghan Lee