Budget Conservation in the Training of Differential Private Models

Amer Elsheikh, Hanfei Lin, Baha Topbas, Yulan Zhang

Academic Mentor: Siting Liu

Final Presentation for Research in Industrial Projects for Students (RIPS) 2022

Agenda

I. Background **II. Ensemble Accuracy** A. Algorithm **B.** Results C. Summary **III.** Questions

I. Background

Consider...

- Open dataset for training models, i.e. medical record, political opinion survey ...
- Protect Respondents' Privacy!

Motivating Example for Differential Privacy (DP)

Motivating Example for Differential Privacy (DP)

the output for the count query will be drawn from a random distribution centered at the true value

Differential Privacy (DP)

Definition: (ε-differential privacy)

Randomized algorithm M is ε -differentially private (DP) if for all neighboring datasets D and D' and all sets of outcomes S.

$$e^{-\varepsilon} \leq \frac{\Pr[\text{Outcome } \mathcal{M}(\mathcal{D}) \text{ is in } S]}{\Pr[\text{Outcome } \mathcal{M}(\mathcal{D}') \text{ is in } S]} \leq e^{\varepsilon}$$

Intuitive: M is epsilon differentially private if for all neighboring datasets D and D', their probabilities of observing any outcomes under M differ by a factor of at most exp(epsilon).

Remarks:

- ε quantifies the **privacy cost** of the procedure.
 - If $\varepsilon \rightarrow 0$, then no user information is leaked, so privacy cost is 0.
 - \circ If ε is large, more user information is leaked, so privacy cost is high.
- Composition Rule: the cumulative privacy cost of DP procedures applied in sequence is at worst additive in epsilon.
 - Let us set and track **privacy budget** for iterative DP procedures.

Model Building Pipeline

At present, the amount of privacy consumed for each model trained is too high to support a practical number of model-building iterations.

Towards Practical Model Building

- Restrict our attention to classification models.
- Only release performance metrics instead of all model parameters
 - Focus on test accuracy
- Subsample & Aggregate → uses an ensemble vote to estimate test accuracy.

II. Ensemble Accuracy

Releasing Test Accuracy

Ensemble Accuracy: Applying Subsample and Aggregate

Subsampler: Randomized Class-Balanced Partition

Aggregator: Report Noisy Arg Max

Works for any machine learning model.

Histogram of teacher accuracies

Noisy Histogram

Proposition: The Report Noisy Arg Max algorithm is ε -differentially private.

Source: C. Dwork and A. Roth, The Algorithmic Foundations of Differential Privacy (2014).

Ensemble Accuracy: Evaluation

Experimental Setup: Effect of Number of Teachers

Dataset	Classes	Features	Training/Test Samples	Туре
UCI Adult (Census)	2	14	30162 / 16281	Tabular
MNIST (Digits)	10	784	60000 / 10000	Image
KDD CUP 99 (downsampled)	4	41	78544 / 28017	Tabular

Models:

- Logistic Regression (LR)
- Random Forest (RF)
- Multilayer Perceptron (MLP)

 $\varepsilon = \ln(3)/10 \cong 0.11$

Uniform histogram bins for aggregator: 0.05

Ensemble Accuracy Results on UCI Adult Logistic Regression

Accuracy v.s. Number of Teachers

- Noisy beginning: if number of teacher is too small, add too much noise.
- **Bad prediction in tail**: if number of teachers is too large, training set for each teacher is too small.
- Optimal value of teacher number (~35) falls in between these two regions.

- 10 trials per data point.
- Plot <u>midpoint</u> of median histogram bin.
- Shaded region is IQR of bin midpoints.

We observed that all 9 experiments has optimal region!

Ensemble Accuracy: Summary

- Consistent behavior across several model classes and real-life datasets.
 - \circ Optimal number of teachers is consistent for fixed ϵ , histogram bins.
 - Good-quality predictions of model test accuracy.
- Suggestions for future work:
 - Investigate empirical relationship between optimal number of teachers, ε, and the width of histogram bins.
 - Improve performance with alternative subsamplers and aggregators.
 - E.g. Non-disjoint subsampler, median aggregator.

