
Introduction Betti numbers of quadratic ideals Axial constants

Computational Algebra
by Polymath Jr.

presented by Ruby Lu

mentored by Alexandra Seceleanu

21st January 2023

[1/34]



Introduction Betti numbers of quadratic ideals Axial constants

» Outline

1. Introduction
2. Betti numbers of quadratic ideals
3. Axial constants

[2/34]



Introduction
∗ What is a Polynomial Ring?
∗ What is an Ideal?
∗ What is a Minimal Free Resolution?
∗ What are Betti Numbers?



Introduction
∗ What is a Polynomial Ring?
∗ What is an Ideal?
∗ What is a Minimal Free Resolution?
∗ What are Betti Numbers?



Introduction Betti numbers of quadratic ideals Axial constants

» What is a Polynomial?

Definition (Monomial)
A monomial is a product of variables and scalars.

Example
3x9y2 is a monomial, but x2 + z is not.

Definition (Polynomial)
A polynomial is a sum of monomials.

Example
x2 + y2 + 2z2 and 6x7 − 2xy3 are both polynomials.
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» What is a Polynomial Ring?

In the following slides, let k denote a field (ex. R,Q, or the
integers modulo 2, denoted here as F2)

Definition (Polynomial Ring)
A polynomial ring R = k[x1, . . . , xd] over k in d variables
is the set of all polynomials formed with d variables and
coefficients in k.

Example (Polynomial Ring)
3x2y+ z3 ∈ Q[x, y, z], but

√
2x2 6∈ Q[x, y, z].

We can multiply and add polynomials in R as normal. They obey
the standard commutative, associative, and distributive laws.
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» What is an Ideal?
Definition (Ideal)
A subset ∅ 6= I ⊂ k[x1, . . . , xd] is an ideal if it satisfies:
∗ if f, g ∈ I, then f+ g ∈ I
∗ If f ∈ I and h ∈ k[x1, . . . , xd], then h · f ∈ I.

Definition (Ideal from Generators)
Let f1, ..., fs be polynomials in k[x1, ..., xd] and set

(f1, ..., fs) =
{ s∑

i=1

hifi : h1, ...,hs ∈ k[x1, ..., xd]
}

Then (f1, ..., fs) is an ideal.

Example (Maximal Ideal)
(x1, . . . , xd) is called the homogeneous maximal ideal. It
consists of all polynomials with constant term 0.
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» Repeatedly Solving (Resolving) Systems of
Polynomials

Set R = k[x1, . . . , xd]. Let Rp = {all p-tuples of polynomials in R}.
We wish to solve a linear system of equations over the
polynomial ring R. The following are equivalent:

Solve the system BX = 0 over R, where B is a matrix

Rp B−→ Rq with entries in R

⇐⇒

Describe Null(B)

Rp is similar to a vector space; null spaces may not have a basis.

[6/34]



Introduction Betti numbers of quadratic ideals Axial constants

» Repeatedly Solving (Resolving) Systems of
Polynomials

Set R = k[x1, . . . , xd]. Let Rp = {all p-tuples of polynomials in R}.
We wish to solve a linear system of equations over the
polynomial ring R. The following are equivalent:

Solve the system BX = 0 over R, where B is a matrix

Rp B−→ Rq with entries in R

⇐⇒

Describe Null(B)
Rp is similar to a vector space; null spaces may not have a basis.

[6/34]



Introduction Betti numbers of quadratic ideals Axial constants

» Repeatedly Solving (Resolving) Systems of
Polynomials
Null(B) may be generated by another matrix C, in which case our
goal is to describe Null(C). We get a sequence

Rl C−→ Rp B−→ Rq

such that Col(C) = Null(B).
But then Null(C) may be generated by another matrix D, so we
continue to obtain a sequence

Rk D−→ Rl C−→ Rp B−→ Rq

so that Col(D) = Null(C).
This process continues, resulting in a longer sequence that we
call a free resolution.
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» What is a Minimal Free Resolution?
Definition (Free Resolution)
Set R = k[x1, . . . , xd]. A free resolution is a sequence

Rβ0 d1←− Rβ1 d2←− Rβ2 d3←− · · ·
dp←− Rβp · · ·

where each di is a matrix with (homogenous) entries in
R,
∗ (Exactness) Null(di) = Col(di+1) for each i ≥ 1,
∗ βi = the number of columns of di, and
∗ βi−1 = the number of rows of di.

Definition (Minimal Free Resolution)
A free resolution is minimal if each of the entries of the
matrices di is in the homogeneous maximal ideal m of R.

[8/34]



Introduction Betti numbers of quadratic ideals Axial constants

» What is a Minimal Free Resolution
Example Minimal Free Resolution
The minimal free resolution

R1
d1=

[
x3 xy y5

]
←−−−−−−−−−−−− R3

d2=


y 0
−x2 −y4
0 x


←−−−−−−−−−−−− R2 d3=0←−−− 0.

has
β0 = 1, β1 = 3, β2 = 2.

Since d1 has one row, we can obtain an ideal from its
entries by setting I = (x3, xy, y5) ⊆ R = Q[x, y].
We say that this is the resolution of R/I.
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» What are Betti Numbers?
Definition (Betti Number)
The i-th Betti number of a minimal free resolution is βi.

Definition (Betti Sequences)
The Betti sequence is (βi)i≥0, also written (β0, . . . , βp) if
βi = 0 for i > p.

Definition (Ordering Betti Sequences)
For two Betti sequences (βi)i≥0 and (β′

i)i≥0, we say that
(βi)i≥0 ≥ (β′

i)i≥0 if βi ≥ β′
i for all i ≥ 0.

Example Betti Sequence Order
We have (1, 3, 3, 1) ≥ (1, 3, 2) since 1 ≥ 1, 3 ≥ 3, 3 ≥ 2,
and 1 ≥ 0.
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» What are Betti Numbers?
Example Betti Table
The Betti numbers of the free resolution

R1 d1←− R3 d2←− R2 d3←− 0.

are arranged together into a Betti table

0 1 2
total: 1 3 2
0: 1 . .
1: . 1 .
2: . 1 1
3: . . .
4: . 1 1

The row labeled “total” gives Betti numbers
β0 = 1, β1 = 3, β2 = 2 with Betti sequence (1, 3, 2).

[11/34]
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Definition (Regularity)
The Castelnuovo-Mumford regularity reg(R/I) is the
maximum index of a nonzero row in the Betti table of
the minimal free resolution of R/I.

Informally, reg(R/I) is a measurement of the highest degrees of
the entries of the matrices appearing in the resolution.
Example Regularity

0 1 2
total: 1 3 2
0: 1 . .
1: . 1 .
2: . 1 1
3: . . .
4: . 1 1

The regularity is reg(R/I) = 4.
[12/34]
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» Computations (Two variables)
1. All possible Betti tables for ideals of F2[x, y] generated by

homogeneous quadratics were computed.

2. There are only 7 such quadratics and thus, only 127
nonempty generating sets.

3. These were generated using M2 and it was found that there
are only 15 distinct ideals and 4 distinct Betti tables as below.

0 1
total: 1 1
0: 1 .
1: . 1

⇒ 7,

0 1 2
total: 1 2 1
0: 1 . .
1: . 2 1

⇒ 3,

0 1 2
total: 1 2 1
0: 1 . .
1: . 2 .
2: . . 1

⇒ 3,

0 1 2
total: 1 3 2
0: 1 . .
1: . 3 2

⇒ 1
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» Computations (Three variables)

1. Trying the naïve calculations as earlier doesn’t work since
there are 63 quadratics giving us 263 − 1 > 9 · 1018 possible
generating sets.

2. However, there is a natural bijection between the set of
ideals that we are interested in and the (nonzero) subspaces
of SpanF2{x2, y2, z2, xy, yz, xz}.

3. This brings down the number to simply 2824 ideals.
4. This was computable in M2 and we get a total of 15 distinct

Betti tables, as depicted in the next slides.

[14/34]
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» Betti tables (three variables)

0 1
total: 1 1
0: 1 .
1: . 1

⇒ 63,

0 1 2
total: 1 2 1
0: 1 . .
1: . 2 1

⇒ 49,

0 1 2
total: 1 2 1
0: 1 . .
1: . 2 .
2: . . 1

⇒ 602,

0 1 2 3
total: 1 3 3 1
0: 1 . . .
1: . 3 1 .
2: . . 2 1

⇒ 364,

0 1 2
total: 1 3 2
0: 1 . .
1: . 3 2

⇒ 176,

0 1 2 3
total: 1 3 3 1
0: 1 . . .
1: . 3 3 1

⇒ 7,

[15/34]
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0 1 2 3
total: 1 3 3 1
0: 1 . . .
1: . 3 . .
2: . . 3 .
3: . . . 1

⇒ 512,

0 1 2 3
total: 1 3 4 2
0: 1 . . .
1: . 3 . .
2: . . 4 2

⇒ 336,

0 1 2 3
total: 1 4 5 2
0: 1 . . .
1: . 4 2 .
2: . . 3 2

⇒ 448,

0 1 2 3
total: 1 4 4 1
0: 1 . . .
1: . 4 3 .
2: . . 1 1

⇒ 154,

0 1 2 3
total: 1 4 4 1
0: 1 . . .
1: . 4 4 1

⇒ 49,

0 1 2 3
total: 1 5 6 2
0: 1 . . .
1: . 5 5 1
2: . . 1 1

⇒ 28,

0 1 2 3
total: 1 5 5 1
0: 1 . . .
1: . 5 5 .
2: . . . 1

⇒ 28,

0 1 2 3
total: 1 5 6 2
0: 1 . . .
1: . 5 6 2

⇒ 7,

0 1 2 3
total: 1 6 8 3
0: 1 . . .
1: . 6 8 3

⇒ 1

[16/34]
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One may refine the above collection and only look at Betti tables
corresponding to a fixed codimension.

Here is how the posets of
the total Betti sequences look, restricting to each codimension.

(1, 1)

(1, 2, 1)

(1, 3, 3, 1)

(a) Codimension 1

(1, 2, 1)

(1, 3, 2)

(1, 3, 3, 1)

(1, 3, 4, 2) (1, 4, 4, 1)

(1, 5, 6, 2)

(b) Codimension 2

(1, 3, 3, 1)

(1, 4, 5, 2) (1, 5, 5, 1)

(1, 5, 6, 2)

(1, 6, 8, 3)

(c) Codimension 3

Figure: Hasse diagrams for Betti sequences in 3 variables
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» Koszul Complex
Definition
Let R be a ring. We say that a is a zero divisor in R if
ab = 0 for some nonzero b ∈ R. Otherwise a is a
non-zero divisor in R.

Proposition

Let R = K[x1, . . . , xd], and f1, . . . , fn ∈ (x1, . . . , xd) such
that f1 is a non-zero divisor in R, and fi is a non-zero
divisor in R/(f1, . . . , fi−1) for all i ∈ {2, . . . ,n}. Then the
following gives a minimal free resolution of
R/(f1, . . . , fn):

0→ R an−→ R(
n

n−1
) an−1−−−→ R(

n
n−2

) → · · · → R(n1) a1−→ R.

[18/34]
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» Mapping Cones

Let f1, f2, f3 ∈ F2[x, y, z]. Then, we have the following exact
sequence

0→ R/((f1, f2) : (f3))→ R/(f1, f2)→ R/(f1, f2, f3)→ 0.

The theory of mapping cones tells us that generally speaking,
given minimal free resolutions of the first two terms in the exact
sequence, we can determine the minimal free resolution of the
last term. The Betti tables ”add.”

[19/34]
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» Ideals with 1 Generator
This is the simplest case. Indeed, given a nonzero f ∈ (x1, . . . , xt),
we simply have

0→ R d=(f)−−−→ R

as a minimal free resolution of R/(f).
Thus, the betti table of R/(f) is

0 1
total: 1 1
0: 1 .
1: . 1

[20/34]
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» Ideals with 2 Generators
Quadratic ideals (f1, f2) in F2[x, y, z] fall into two categories:

1. If f2 is a nonzerodivisor in R/(f1), then by the Koszul
complex, the Betti table corresponding to R/I is

0 1 2
total: 1 2 1
0: 1 . .
1: . 2 .
2: . . 1

2. If f2 is a zerodivisor in R/(f1), the Betti table corresponding
to R/I is

0 1 2
total: 1 2 1
0: 1 . .
1: . 2 1

[21/34]
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» Ideals with 3 Generators

To resolve all quadratic ideals (f1, f2, f3) in F2[x, y, z], we divide the
ideals into four cases:

f2
zero divisor
in R/(f1)

f3
zero divisor
in R/(f1, f2)

Number Example

Case 1 512 (x2, y2, z2)
Case 2 ✓ 297 (x2, xy, z2)
Case 3 ✓ ✓ 874 (x2, y2, xy)
Case 4 ✓ 161 (x2, xy, y2)

[22/34]
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In all, there are 1844 ideals with three generators in F2[x, y, z].
Except for a special case in case 4, we managed to use Koszul
Complex and Mapping Cone to obtain the Betti Tables for all the
ideals in the four cases.

[23/34]
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» Monomial Orders
Let R = K[x1, . . . , xd]. For each α = (a1, . . . , ad) ∈ Zd

≥0 set
xα = xa11 . . . xadd .

Definition (Graded Reverse Lexicographic (Grevlex)
Order)
For each xα, xβ ∈ R, xα > xβ provided that
deg(xα) > deg(xβ) or if deg(xα) = deg(xβ) and the last
nonzero entry of α− β is negative.

Example
Let R = Q[x, y, z].
∗ x4yz > x2y because 6 > 3
∗ x2y > xyz because (2, 1, 0)− (1, 1, 1) = (1, 0,−1)

[24/34]
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» Initial Ideals

Definition (Initial Term)
Given f ∈ R \ {0}, the initial term of f, denoted in(f), is
the largest monomial appearing as a term in f.

Example
Let R = Q[x, y, z]. Then in(x4yz+ x2y+ xyz) = x4yz

Definition (Initial Ideal)
Let I be an ideal. Then the initial ideal of I, is defined
to be

in(I) := ({in(f) | f ∈ I})

[25/34]
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» Initial Ideals

Initial ideals depend on the choice of coordinate system.

Example
Let I = (x2, y2) ⊆ Q[x, y]. A change of coordinates
x 7→ x+ y and y 7→ x− y, results in

I′ = ((x+ y)2, (x− y)2).

Taking initial ideals,

in(I) = (x2, y2) and in(I′) = (x2, xy, y3).

This motivates the introduction of generic initial ideals.

[26/34]
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» Generic Initial Ideals

Definition (Generic Initial Ideals)
The generic initial ideal of a homogeneous ideal I,
denoted gin(I), is the ideal obtained by first applying a
sufficiently general linear change of coordinates on R,
then taking the initial ideal.

Example
Let I = (x2, y2) ⊆ Q[x, y]. Taking a sufficiently general
change of coordinates x 7→ x+ y and y 7→ x− y we have

gin(I) = in((x+ y)2, (x− y)2) = (x2, xy, y3).

[27/34]
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» Powers of Ideals

We study how the operation of taking the generic initial ideal
interacts with the operation of multiplication.

Definition (n-th Power of an Ideal)
For n ∈ N the n-th power of an ideal I is the ideal
generated by the n-fold products of elements of I, i.e.,

In = (f1f2...fn|fi ∈ I).

Example
Suppose I = (x2, y2). It follows that I2 = (x4, x2y2, y4),
I3 = (x6, x4y2, x2y4, y6), etc.

[28/34]
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» What is an Axial Number?
Definition
Let I be a monomial ideal and 1 ≤ i ≤ d. Then we define
the i-th axial number of I, denoted ni(I), to be equal to
the smallest power of xi contained in I.

Example
Let I = (x2, xy, y3). Then n1(I) = 2 and n2(I) = 3.

0 1 2 3 4
0

1

2

3

4

gin(I)

x2

y3

xy
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» Axial Numbers of Powers of Ideals
Proposition
Let I be a monomial ideal and 1 ≤ i ≤ d. Then ni(In) is
linear.

Example
Let I = (x2, y2). Then ni(In) = 2n.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

I

x2

y2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

I2

x4

x2y2

y4

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

I3

x6

x4y2

x2y4

y6
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» What is an Axial Constant?
Definition (Axial Constants)
For a homogeneous ideal I, let ai(I) = ni(gin(I)).

Definition
Let I be a homogenous ideal. Let ai(n) = ai(In).

Example
Let I = (x2, y2) ⊆ Q[x, y]. So gin(I) = (x2, xy, y3), and we
can show that ai(n) = 2n+ i− 1.

0 1 2 3 4 5 6 7 8
0

1

2

3
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5

6
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» Significance

Proposition
If r is the largest integer for which ar(I) is defined, then
ar(I) = reg(I).

Fact
reg(In) is linear for n� 0.

Corollary
ar(n) is linear for n� 0.

[32/34]
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» Linearity of Axial Constants
Let I be a homogeneous ideal.
Theorem
For some I depending on I, ai(n) = reg(In).

Corollary (Linearity of Axial Constants)
ai(n) is linear for n� 0.

Example (First Axial Constant)
a1(n) = na1(I)

Example (Last Axial Constant)
If I = (xa11 , . . . , xadd ) and a = max{ai} then

ad(n) = a(n− 1) + (a1 + . . .+ ad)− (d− 1).

[33/34]
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Thanks to our Polymath mentor Professor Alexandra Seceleanu
and NCUWM for providing such a valuable opportunity to share
our work!

[34/34]


	Introduction
	What is a Polynomial Ring?
	What is an Ideal?
	What is a Minimal Free Resolution?
	What are Betti Numbers?

	Betti numbers of quadratic ideals
	Computationally Generating Betti Tables
	Theoretical Approach

	Axial constants
	Background
	Growth of Axial Constants


