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Let’s say that I am driving down the highway...

1. My four polymer-based tires are subject to mechanical vibrations.
2. In particular, the nylon cords are in an adiabatic environment.
3. The mechanical vibrations plus the adiabatic environment lead to

the self-heating phenomenon.
4. Over time, this can cause permanent deformation of the material.
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More Applications

The problem of self-heating arises across multiple fields and industries.
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Introduction to the Semilinear Heat Equation

We consider the semilinear heat equation which is given in 1D as

ut − ∆u + β (u − ug) = α|u|γ on (a, b),
u(a, t) = u(b, t) = ug ,

u(x , 0) = ug ,

where
• u = u(x , t) is the unknown temperature
• α > 0, β > 0, and γ > 0 are problem-dependent constants
• ug is the constant temperature of the surrounding medium

Note: If β = 0, this equation is called the Fujita equation.
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Modeling the Self-Heating Phenomenon

ut − ∆u + β (u − ug) = α|u|γ on (a, b),
u(a, t) = u(b, t) = ug ,

u(x , 0) = ug ,

• With certain parameters, u(x , t) can grow exponentially without any
bound as t increases.

• This exponential growth, or ”blow-up”, corresponds to material
failure in the context of our problem.

• Remark: ug is constant for simplicity, but it is okay if ug changes in
time.



Investigation of a 1D semilinear heat equation Conclusion and Future Work

Our Numerical Scheme

We rewrite the semilinear heat equation in terms of a new variable:

û = u − ug

We consider a backward Euler temporal discretization together with a
first order explicit approximation of the nonlinear term:

ûn+1 − ûn

∆t − ∆ûn+1 + βûn+1 = α (û + ug)γ ,

û0 = 0,

where ∆t > 0 denotes the time step size and û is zero on the boundary.
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Long-time Stability

• For our numerical method, we define stability as solutions that are
bounded for every time step.

• Numerical method failure directly relates to the instability of the 1D
semilinear heat equation.

• Through our numerical scheme, we were able to determine sufficient
conditions that give stability for specific gamma cases:

• 0 < γ < 1
• γ = 1
• 1 < γ < 3
• γ = 3
• γ > 3
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Theorem 1

Suppose that γ = 1 in our algorithm and β > 3α
2 . Then the solution is

long time stable: for any given n ∈ N,

||ûn|| ≤
α
2 ||ug ||2

C−2
p +β− 3α

2
,

where C−2
p is a Poincare constant.

Note: For our proof, (x , y) is defined as the L2(Ω) inner product.
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Proof Outline of Theorem 1
• We multiply our algorithm by ûn+1 and take the integral over Ω.

Rewriting our first term using the polarization identity and our
second term using Green’s theorem, we now have that

1
2∆t

(
||ûn+1||2 − ||ûn||2 + ||ûn+1 − ûn||2

)
+||∇ûn+1||2+β||ûn+1||2

= α
(
(ûn + ug) , ûn+1

)
.

• By the Cauchy-Schwarz and Young inequalities, we can upper bound
the right-hand side of our equation. Dropping the nonnegative term,

1
2∆t ||ûn+1 − ûn||2 and using Poincare’s inequality, we lower bound
the left-hand side of our equation. We now have that

( 1
2∆t + C−2

p + β − α

)
||ûn+1||2 ≤

(
α

2 + 1
2∆t

)
||ûn||2 + α

2 ||ug ||2.
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)
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Proof Outline of Theorem 1 Cont’d

• Dividing both sides by α
2 + 1

2∆t , we find that(
1

2∆t +C−2
p +β−α

α
2 + 1

2∆t

)
||ûn+1||2 ≤ ||ûn||2 +

(
1

α
2 + 1

2∆t

)
α
2 ||ug ||2.

• Let r :=
1

2∆t +C−2
p +β−α

α
2 + 1

2∆t
and note that since β > 3α

2 , we can now use
Lemma 2.5 from Larios, et. al. to get

||ûn+1||2 ≤ ||û0||2
(

1
r

)n+1
+

(
1

α
2 + 1

2∆t

)
α
2 ||ug ||2

r−1 =
α
2 ||ug ||2

C−2
p +β− 3α

2
,

which completes the proof.
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(
1

α
2 + 1

2∆t

)
α
2 ||ug ||2.

• Let r :=
1

2∆t +C−2
p +β−α

α
2 + 1

2∆t
and note that since β > 3α

2 , we can now use
Lemma 2.5 from Larios, et. al. to get
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Theorem 3

Suppose that γ = 3 in the numerical scheme. Assume that
∆t ≤ min{1, 1

β }, and

α ≤ 1

2
(

|Ω|2γ
(

1
2β (2γ)2 α2||uγ

g ||2
)

2
β + |Ω|2γ

(
1

2β (2γ)2 α2||uγ
g ||2

)2 4
β2

)
Then the solution is long time stable: for any given n ∈ N,

||ûn|| ≤
√

2
β

(
1

2β (2γ)2 α2||uγ
g ||2

)
.
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Proof of Theorem 3

• The proof of γ = 3 uses similar tools to the proof of γ = 1.

• However, we needed induction as well as a few more inequalities:
• one-dimensional Gagliardo–Nirenberg–Sobolev inequalities

||f ||Lp ≤ CGN(p)||f ′||θL2 ||f ||1−θ
L2 if p ∈ (2, ∞), with θ = p−2

2p
• Agmon’s inequality

||u||L∞(Ω) ≤ C ||u||
1
2
L2 ||u||

1
2
H1(Ω)

• The tools utilized in this theorem provided a basis for the remaining
cases (excluding 0 < γ < 1).
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Sufficient Stability Conditions

Gamma Bound (if restricitions are met)
0 < γ < 1 ||ûn|| ≤ α||ug ||2

C−2
p +β−2α(|Ω|+1)

γ = 1 ||ûn|| ≤
α
2 ||ug ||2

C−2
p +β− 3α

2

1 < γ < 3 ||ûn|| ≤
√

4
β

(
2

∫
Ω

(
2
β

(
2
3

)2
)

+ 2
β ||uγ

g ||2
)

γ = 3 ||ûn|| ≤
√

2
β

(
1

2β (2γ)2 α2||uγ
g ||2

)
γ > 3 ||ûn|| ≤

√
2
β

(
1

2β (2γ)2 α2||uγ
g ||2

)
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Numerical Results
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Concluding Results

Conclusion
• Through our numerical scheme, we have discovered sufficient

long-time stability conditions for every γ > 0.

• The proofs are more involved for the analysis of γ > 1.
• Our numerical results align and illustrate our theorems.

Future Work
• Extend this work into higher dimensions.
• Create, analyze, and test a 1D data assimilation model for the

semilinear heat equation with a penalization term.
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Thank You!
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