Investigation of a 1D semilinear heat equation $\underset{000000}{\text{0000000}}$

Conclusion and Future Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Numerical Analysis of the 1D Semilinear Heat Equation

Tori Luongo

Advisor: Dr. Leo Rebholz

School of Mathematical and Statistical Sciences at Clemson University, Clemson, SC

January 21, 2023

Investigation of a 1D semilinear heat equation $\underset{0000000}{\text{0000000}}$

Conclusion and Future Work $_{\rm OO}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overview

Investigation of a 1D semilinear heat equation Introduction Mathematical Properties

Conclusion and Future Work Concluding Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let's say that I am driving down the highway...

1. My four polymer-based tires are subject to mechanical vibrations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. My four polymer-based tires are subject to mechanical vibrations.
- 2. In particular, the nylon cords are in an adiabatic environment.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. My four polymer-based tires are subject to mechanical vibrations.
- 2. In particular, the nylon cords are in an adiabatic environment.
- 3. The mechanical vibrations plus the adiabatic environment lead to the self-heating phenomenon.

- 1. My four polymer-based tires are subject to mechanical vibrations.
- 2. In particular, the nylon cords are in an adiabatic environment.
- 3. The mechanical vibrations plus the adiabatic environment lead to the self-heating phenomenon.
- 4. Over time, this can cause permanent deformation of the material.

Conclusion and Future Work $_{\rm OO}$

More Applications

The problem of self-heating arises across multiple fields and industries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction to the Semilinear Heat Equation

We consider the semilinear heat equation which is given in 1D as

$$\begin{split} u_t - \Delta u + \beta \left(u - u_g \right) &= \alpha |u|^{\gamma} \quad \text{on} \quad (a, b), \\ u(a, t) &= u(b, t) = u_g, \\ u(x, 0) &= u_g, \end{split}$$

where

- u = u(x, t) is the unknown temperature
- $\alpha > 0$, $\beta > 0$, and $\gamma > 0$ are problem-dependent constants
- ug is the constant temperature of the surrounding medium

Introduction to the Semilinear Heat Equation

We consider the semilinear heat equation which is given in 1D as

$$\begin{split} u_t - \Delta u + \beta \left(u - u_g \right) &= \alpha |u|^{\gamma} \quad \text{on} \quad (a, b), \\ u(a, t) &= u(b, t) = u_g, \\ u(x, 0) &= u_g, \end{split}$$

where

- u = u(x, t) is the unknown temperature
- $\alpha > 0$, $\beta > 0$, and $\gamma > 0$ are problem-dependent constants
- ug is the constant temperature of the surrounding medium

Note: If $\beta = 0$, this equation is called the Fujita equation.

Modeling the Self-Heating Phenomenon

$$\begin{split} u_t - \Delta u + \beta \left(u - u_g \right) &= \alpha |u|^{\gamma} \quad \text{on} \quad (a, b), \\ u(a, t) &= u(b, t) = u_g, \\ u(x, 0) &= u_g, \end{split}$$

- With certain parameters, u(x, t) can grow exponentially without any bound as t increases.
- This exponential growth, or "blow-up", corresponds to material failure in the context of our problem.
- Remark: u_g is constant for simplicity, but it is okay if u_g changes in time.

Investigation of a 1D semilinear heat equation $\underset{000000}{000000}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Our Numerical Scheme

We rewrite the semilinear heat equation in terms of a new variable:

$$\hat{u} = u - u_g$$

We consider a backward Euler temporal discretization together with a first order explicit approximation of the nonlinear term:

$$\frac{\hat{u}^{n+1}-\hat{u}^n}{\Delta t} - \Delta \hat{u}^{n+1} + \beta \hat{u}^{n+1} = \alpha \left(\hat{u} + u_g\right)^{\gamma},$$
$$\hat{u}^0 = 0,$$

where $\Delta t > 0$ denotes the time step size and \hat{u} is zero on the boundary.

Investigation of a 1D semilinear heat equation $\overset{\bigcirc\bigcirc\bigcirc\odot\odot\odot\odot}{\bigcirc}$

Conclusion and Future Work $_{\rm OO}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Long-time Stability

• For our numerical method, we define stability as solutions that are bounded for every time step.

Investigation of a 1D semilinear heat equation $\underset{000000}{000000}$

Conclusion and Future Work $_{\rm OO}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Long-time Stability

- For our numerical method, we define stability as solutions that are bounded for every time step.
- Numerical method failure directly relates to the instability of the 1D semilinear heat equation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Long-time Stability

- For our numerical method, we define stability as solutions that are bounded for every time step.
- Numerical method failure directly relates to the instability of the 1D semilinear heat equation.
- Through our numerical scheme, we were able to determine sufficient conditions that give stability for specific gamma cases:

•
$$\gamma = 1$$

•
$$\gamma = 3$$

Theorem 1

Suppose that $\gamma = 1$ in our algorithm and $\beta > \frac{3\alpha}{2}$. Then the solution is long time stable: for any given $n \in \mathbb{N}$,

$$||\hat{u}^n|| \leq rac{rac{lpha}{2}||u_g||^2}{C_p^{-2}+eta-rac{3lpha}{2}},$$

where C_p^{-2} is a Poincare constant.

Note: For our proof, (x, y) is defined as the $L^2(\Omega)$ inner product.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof Outline of Theorem 1

 We multiply our algorithm by ûⁿ⁺¹ and take the integral over Ω. Rewriting our first term using the polarization identity and our second term using Green's theorem, we now have that

$$\frac{1}{2\Delta t} \left(||\hat{u}^{n+1}||^2 - ||\hat{u}^n||^2 + ||\hat{u}^{n+1} - \hat{u}^n||^2 \right) + ||\nabla \hat{u}^{n+1}||^2 + \beta ||\hat{u}^{n+1}||^2 \\ = \alpha \left((\hat{u}^n + u_g), \hat{u}^{n+1} \right).$$

Proof Outline of Theorem 1

 We multiply our algorithm by ûⁿ⁺¹ and take the integral over Ω. Rewriting our first term using the polarization identity and our second term using Green's theorem, we now have that

$$\frac{1}{2\Delta t} \left(||\hat{u}^{n+1}||^2 - ||\hat{u}^n||^2 + ||\hat{u}^{n+1} - \hat{u}^n||^2 \right) + ||\nabla \hat{u}^{n+1}||^2 + \beta ||\hat{u}^{n+1}||^2 \\ = \alpha \left((\hat{u}^n + u_g), \hat{u}^{n+1} \right).$$

• By the Cauchy-Schwarz and Young inequalities, we can upper bound the right-hand side of our equation. Dropping the nonnegative term, $\frac{1}{2\Delta t}||\hat{u}^{n+1} - \hat{u}^n||^2$ and using Poincare's inequality, we lower bound the left-hand side of our equation. We now have that

$$\left(\frac{1}{2\Delta t} + C_p^{-2} + \beta - \alpha\right) ||\hat{u}^{n+1}||^2 \le \left(\frac{\alpha}{2} + \frac{1}{2\Delta t}\right) ||\hat{u}^n||^2 + \frac{\alpha}{2} ||u_g||^2.$$

Proof Outline of Theorem 1 Cont'd

• Dividing both sides by $\frac{\alpha}{2} + \frac{1}{2\Delta t}$, we find that $\left(\frac{\frac{1}{2\Delta t} + C_p^{-2} + \beta - \alpha}{\frac{\alpha}{2} + \frac{1}{2\Delta t}}\right) ||\hat{u}^{n+1}||^2 \le ||\hat{u}^n||^2 + \left(\frac{1}{\frac{\alpha}{2} + \frac{1}{2\Delta t}}\right) \frac{\alpha}{2} ||u_g||^2.$

Proof Outline of Theorem 1 Cont'd

- Dividing both sides by $\frac{\alpha}{2} + \frac{1}{2\Delta t}$, we find that $\left(\frac{\frac{1}{2\Delta t} + C_p^{-2} + \beta \alpha}{\frac{\alpha}{2} + \frac{1}{2\Delta t}}\right) ||\hat{u}^{n+1}||^2 \leq ||\hat{u}^n||^2 + \left(\frac{1}{\frac{\alpha}{2} + \frac{1}{2\Delta t}}\right) \frac{\alpha}{2} ||u_g||^2.$
- Let $r := \frac{\frac{1}{2\Delta t} + C_{\rho}^{-2} + \beta \alpha}{\frac{\alpha}{2} + \frac{1}{2\Delta t}}$ and note that since $\beta > \frac{3\alpha}{2}$, we can now use Lemma 2.5 from Larios, et. al. to get

$$||\hat{u}^{n+1}||^{2} \leq ||\hat{u}^{0}||^{2} \left(\frac{1}{r}\right)^{n+1} + \frac{\left(\frac{1}{\frac{\alpha}{2}+\frac{1}{2\Delta t}}\right)^{\frac{\alpha}{2}}||u_{g}||^{2}}{r-1} = \frac{\frac{\alpha}{2}||u_{g}||^{2}}{C_{p}^{-2}+\beta-\frac{3\alpha}{2}},$$

which completes the proof.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem 3

Suppose that $\gamma = 3$ in the numerical scheme. Assume that $\Delta t \leq \min\{1, \frac{1}{\beta}\}$, and

$$\alpha \leq \frac{1}{2\left(|\Omega|2^{\gamma} \left(\frac{1}{2\beta} \left(2^{\gamma}\right)^{2} \alpha^{2} ||u_{g}^{\gamma}||^{2}\right) \frac{2}{\beta} + |\Omega|2^{\gamma} \left(\frac{1}{2\beta} \left(2^{\gamma}\right)^{2} \alpha^{2} ||u_{g}^{\gamma}||^{2}\right)^{2} \frac{4}{\beta^{2}}\right)}$$

Then the solution is long time stable: for any given $n \in N$,

$$||\hat{u}^{n}|| \leq \sqrt{rac{2}{eta} \left(rac{1}{2eta} \left(2^{\gamma}
ight)^{2} lpha^{2} ||u_{g}^{\gamma}||^{2}
ight)}.$$

Investigation of a 1D semilinear heat equation $\underset{0000000}{\circ}$

Conclusion and Future Work $_{\rm OO}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Proof of Theorem 3

• The proof of $\gamma = 3$ uses similar tools to the proof of $\gamma = 1$.

Investigation of a 1D semilinear heat equation $\underset{000000}{\circ}$

Proof of Theorem 3

- The proof of γ = 3 uses similar tools to the proof of γ = 1.
- However, we needed induction as well as a few more inequalities:
 - one-dimensional Gagliardo–Nirenberg–Sobolev inequalities $||f||_{L^p} \leq C_{GN}(p)||f'||_{L^2}^{\theta}||f||_{L^2}^{1-\theta}$ if $p \in (2,\infty)$, with $\theta = \frac{p-2}{2p}$
 - Agmon's inequality

$$||u||_{L^{\infty}(\Omega)} \leq C||u||_{L^{2}}^{\frac{1}{2}}||u||_{H^{1}(\Omega)}^{\frac{1}{2}}$$

Investigation of a 1D semilinear heat equation $\underset{00000000}{\overset{\circ\circ\circ\circ}{\overset{\circ\circ}{\overset{\circ\circ}{\overset{\circ\circ}{\overset{\circ\circ}{\overset{\circ\circ}{\overset{\circ\circ}{\overset{\circ\circ}{\overset{\circ\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of Theorem 3

- The proof of γ = 3 uses similar tools to the proof of γ = 1.
- However, we needed induction as well as a few more inequalities:
 - one-dimensional Gagliardo–Nirenberg–Sobolev inequalities $||f||_{L^p} \leq C_{GN}(p)||f'||_{L^2}^{\theta}||f||_{L^2}^{1-\theta}$ if $p \in (2,\infty)$, with $\theta = \frac{p-2}{2p}$
 - Agmon's inequality

$$||u||_{L^{\infty}(\Omega)} \leq C||u||_{L^{2}}^{\frac{1}{2}}||u||_{H^{1}(\Omega)}^{\frac{1}{2}}$$

 The tools utilized in this theorem provided a basis for the remaining cases (excluding 0 < γ < 1). Conclusion and Future Work

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sufficient Stability Conditions

Gamma	Bound (if restricitions are met)
$0 < \gamma < 1$	$ \hat{u}^n \leq \frac{\alpha u_g ^2}{C_p^{-2} + \beta - 2\alpha (\Omega + 1)}$
$\gamma = 1$	$ \hat{u}^{n} \leq rac{rac{lpha}{2} u_{g} ^{2}}{C_{p}^{-2}+eta-rac{3lpha}{2}}$
$1 < \gamma < 3$	$ \hat{u}^n \leq \sqrt{\frac{4}{\beta} \left(2 \int_{\Omega} \left(\frac{2}{\beta} \left(\frac{2}{3} \right)^2 \right) + \frac{2}{\beta} u_g^{\gamma} ^2 \right)}$
$\gamma = 3$	$ \hat{u}^n \leq \sqrt{rac{2}{eta} \left(rac{1}{2eta} \left(2^\gamma ight)^2 lpha^2 u^\gamma_{\mathcal{g}} ^2 ight)}$
$\gamma > 3$	$ \hat{u}^n \leq \sqrt{rac{2}{eta} \left(rac{1}{2eta} \left(2^\gamma ight)^2 lpha^2 u^\gamma_{m{g}} ^2 ight)}$

Numerical Results

Investigation of a 1D semilinear heat equation $\underset{0000000}{\text{0000000}}$

Conclusion and Future Work $_{\odot \odot}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concluding Results

Conclusion

 Through our numerical scheme, we have discovered sufficient long-time stability conditions for every γ > 0. Investigation of a 1D semilinear heat equation $\underset{0000000}{\overset{000000}{\overset{000000}{\overset{000000}{\overset{00000}{\overset{00000}{\overset{00000}{\overset{00000}{\overset{000}{\overset{00}{\overset{000}{\overset{000}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{\overset{0}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{$

Conclusion and Future Work $_{\odot \odot}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concluding Results

Conclusion

- Through our numerical scheme, we have discovered sufficient long-time stability conditions for every γ > 0.
- The proofs are more involved for the analysis of $\gamma > 1$.

Investigation of a 1D semilinear heat equation $\underset{0000000}{\overset{000000}{\overset{000000}{\overset{000000}{\overset{00000}{\overset{00000}{\overset{00000}{\overset{00000}{\overset{000}{\overset{00}{\overset{000}{\overset{000}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{\overset{0}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{$

Conclusion and Future Work $_{\odot \odot}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Concluding Results

Conclusion

- Through our numerical scheme, we have discovered sufficient long-time stability conditions for every γ > 0.
- The proofs are more involved for the analysis of $\gamma > 1$.
- Our numerical results align and illustrate our theorems.

Investigation of a 1D semilinear heat equation $\underset{0000000}{\overset{000000}{\overset{000000}{\overset{000000}{\overset{00000}{\overset{00000}{\overset{00000}{\overset{00000}{\overset{000}{\overset{00}{\overset{000}{\overset{000}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{\overset{0}{\overset{00}{\overset{00}{\overset{00}{\overset{00}{$

Conclusion and Future Work $_{\odot \odot}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Concluding Results

Conclusion

- Through our numerical scheme, we have discovered sufficient long-time stability conditions for every $\gamma > 0$.
- The proofs are more involved for the analysis of $\gamma > 1$.
- Our numerical results align and illustrate our theorems.

Future Work

• Extend this work into higher dimensions.

Investigation of a 1D semilinear heat equation $\underset{000000}{\text{0000000}}$

Conclusion and Future Work $_{\odot \odot}$

Concluding Results

Conclusion

- Through our numerical scheme, we have discovered sufficient long-time stability conditions for every $\gamma > 0$.
- The proofs are more involved for the analysis of $\gamma > 1$.
- Our numerical results align and illustrate our theorems.

Future Work

- Extend this work into higher dimensions.
- Create, analyze, and test a 1D data assimilation model for the semilinear heat equation with a penalization term.

Thank You!

We would like to thank and acknowledge the School of Mathematical and Statistical Sciences at Clemson University, the Clemson Creative Inquiry Summer CI + UR Program, and the National Science Foundation for their support and funding on this project.

(日) (四) (日) (日) (日)