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Epidemic Modeling and the SIR/SEIR Models

2 Main Ideas for Modeling:

• Given data about number of cases, can we retroactively
understand information about the disease?

• Given biological information about a disease, can we predict the
severity and future outcome of an epidemic?
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SEIR Model
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Age-Dependent Model

• SC/A: the number of susceptible people, assuming that everyone is
susceptible at t=0.

• EC/A: the number of exposed people who made successful contact
with an infected person but do not have symptoms.

• IC/A: the number of infected people.

• RC/A: the number of recovered people, assuming that recovery grants
immunity
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Age-Dependent Model
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Our Known and Unknown Parameters

While most of our parameters are constants, here, λ is a function of
IC , IA, EC , EA.
Children are frequency dependent while adults are density dependent.

• λC(IC , IA, EC , EA) = βCC
IC
NC

+ βAC
IA
NA

+ ξCC
EC
NC

+ ξAC
EA
NA

• λA(IC , IA, EC , EA) = βAAIA + βCAIC + ξAAEA + ξCAEC
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The Model Equations

• dSC
dt = ΠNA − fSC − λCSC

• dSA
dt = fSC − λASA − µSA

• dEC
dt = λCSC − ϵCEC − fEC

• dEA
dt = λASA + fEC − ϵAEA − µEA

• dIC
dt = ϵCEC − fIC − γCIC

• dIA
dt = fIC + ϵAEA − γAIA − µIA

• dRC
dt = γCIC − fRC

• dRA
dt = γAIA + fRC − µRA

Where Π = µ
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Parameter Values

Parameter Range Reasoning
βCC [0.1, 1.0] Estimated from reasonable R0

βAC [.05, 1.0] Estimated from reasonable R0

βAA [5× 10−7, 2× 10−5] Estimated from reasonable R0

βCA [1× 10−8, 5× 10−7] Estimated from reasonable R0

γC [0.02, 1] Infectious from 1 to 50 days

γA [0.01, 1] Infectious from 1 day to 100 days

µ [4× 10−5, 8× 10−5] Adult age from 35 to 70

f [1× 10−4, 5× 10−4] Child age from 5.5 to 27

ϵC [0.04, 1] Incubation from 1 and 25 days

ϵA [0.02, 1] Incubation from 1 to 50 days
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Basic Reproduction Number

Definition

R0 is the number of new infections that can come from one infected
individual in a totally susceptible population

• R0 < 1 will not create an epidemic

• R0 > 1 might create an epidemic

We use the next generation matrix method to compute our R0
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Next Generation Matrix Method

Approach: calculate a matrix whose ij-th term represents the average
number of infections in the ith compartment created by individuals in
the jth compartment

1 Identify diseased compartments

2 Identify F (new secondary infections) and V (movement out of
compartments)

Linearize at the Disease Free Equilibrium and find F (the Jacobian of
F) and V (the Jacobian of V)
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Calculating R0 for the Adult-Child Model

The R0 of our Adult-Child compartment depends on:

A =
ξCC

(ϵC + f)
+

βCCϵC
(ϵC + f)(f + γC)

+
NCfξAC

NA(ϵC + f)(ϵA + µ)

+
NCβAC(ϵAf

2 + ϵAϵCf + ϵAfγC + ϵCfµ)

NA(ϵC + f)(f + γC)(ϵA + µ)(γA + µ)

B =
NCξAC

NA(ϵA + µ)
+

NCβACϵA
NA(ϵA + µ)(γA + µ)

E =
NAξCA

ϵC + f
+

NAβCAϵC
(ϵC + f)(f + γC)

+
NAfξAA

(ϵC + f)(ϵA +mu)
+

NAβAA(ϵAf
2 + ϵAϵCf + ϵAfγC + ϵCfµ)

(ϵC + f)(f + γC)(ϵA + µ)(γA + µ)

F =
NAξAA

ϵA + µ
+

NAβAAϵA
(ϵA + µ)(γA + µ)
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Relating SEIR Model to Adult-Child Model

• Goal: compare simple SEIR to SEIR Adult-Child

• How do we relate β to βAA,βCC ,βAC , and βCA?

• How do ϵ and γ relate to ϵC , ϵA, γC , and γA?
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Base Case

• Begin with a base case where Child values = Adult values

• Account for frequency and density dependent β values

Adult-Child Relation Adult-Child Relation
βAA β βCC βNC

βCA β βAC βNA

ϵC ϵ ϵA ϵ

γC γ γA γ

NC = 250 N −NA NA = 750 N −NC

β ≈ 0.00027, ϵ = 0.25, γ = 0.087
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Base Case

Adult Child SEIR R0 = 3.1 and base case SEIR R0 = 3.1
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Comparing R0 : Adult to Child vs Child to Child
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Isolated Child Populations

When our β values are not identical, what happens if we just look at
one isolated population (just adults or just children)?

Standard SEIR Adult-Child Model Value

β
βCC

NC
0.00000108

ϵ ϵC 0.3

γ γC 0.1

How do we account for population size and the number of people
interacting?
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Comparing Infectious Results: Child Infections

Figure: SEIR: I(0) = 250, SEIR-CA:
IA(0) = 750, IC(0) = 250

Figure: SEIR: I(0) = 1000, SEIR-CA:
IA(0) = 750, IC(0) = 250
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What is Identifiability?

Given data, we can create and fit any model. But can we use a model
to predict data and understand a disease? If we ask a question, will
the model give us multiple different answers or one true value?
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Structural and Practical Identifiability

• Structural Identifiability: A model is structurally identifiable if
the model parameters can be uniquely determined based on the
model formulation with continuous data and no noise.

• Practical Identifiability: A model is practically identifiable if we
can recover reasonable model parameters given incomplete or
imperfect data.
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Computing Structural Identifiability

We compute structural identifiability using Identifiability Analysis in
Mathematica.

• works by computing a non-linear algebraic system, whose rank of
the Jacobian determines the identifiability of the system.

• reduces computational complexity by directly computing the
entries of the Jacobian matrix and by performing all calculations
modulo a large prime number.

• uses local algebraic identifiabilty to produce a Boolean output
where true means all parameters in the parameter set p are
locally identifiable, while false means one or more parameters in
the parameter set p are not locally identifiable.
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Structural Identifiability Results

output vector fixed parameters identifiable parameters non-identifiable

IC , IA f, µ, βCC All None

IC , IA f, µ, βCC , βCA All None

IC , IA f, µ, γC , γA, ϵC , ϵA All None

Table: Structural Identifiability of SEIR Parameters Non-Infectious E

output vector fixed parameters identifiable parameters non-identifiable

IC , IA f, µ All None

IC + IA f, µ All None

RC , RA f, µ All None

RC +RA f, µ All None

CC , CA f, µ None All

CC +RC , CA +RA f, µ All None

CC + CA, RC +RA f, µ All None

Table: Structural Identifiability of SEIR Parameters: Infectious E
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Practical Identifiability Motivation

• A model could be structurally identifiable, but it still could be
practically unidentifiable due to quality of data, which often
needs to be addressed in model parameter estimation.

• We focus on practical identifiability given prevalence data IC , IA

• Method: Monte Carlo Simulation

• Practical identifiability is a very local behavior, so we fix our true
parameters at COVID specific values in our investigation.
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Practical Identifiability Motivation

Figure: Infectious and non-infectious E SEIR adult child model dynamics
with initial conditions SC0 = 240, SA0 = 740, EC0 = 0, EA0 = 0, RC0 = 0,
and RA0 = 0.

Note: We adjust the time scale in our calculations to account for the
differences in dynamics.
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Computing Practical Identifiability

Def: A parameter set p is practically identifiable if ARE(p
(k)
σ ) ≤ σ for

all σ.
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Identifiability of Adult-Child Non-Infectious E SEIR Model

Figure: For 365 days using (time of peak infection for children is at day 1
and time of peak infection for adults is at day 62)
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Identifiability of Adult-Child Non-Infectious E Beta
Dependencies

Parameter Dependency Parameter Dependency

βAA β βCC
NC0

0.1434β

βCA 0.1912β βAC
NA0

0.1667β

Figure: COVID specific infection rate dependencies

• Scale the contact rate and probability of infection for the other
three according to their relationships to βAA.

• βAA is the the largest followed by βCA,
βAC

NA(0)
, and

βCC

NC(0)
.
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Identifiability of Adult-Child Non-Infectious E Beta
Dependencies Continued

Figure: For 365 days (time of peak infection for children is at day 71 and
time of peak infection for adults is at day 62)
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Conclusions

• Differentiating between adults and children allows us to
determine unique disease dynamics for the respective groups.

• Interactions between populations significantly change infection
peaks and can create secondary infection peaks

• Isolated, non-infectious populations may still experience an
epidemic after interacting with a more infectious population

• Cumulative outputs are not structurally identifiable.

• Including relevant β and ξ dependencies produce a full set of
practically identifiable parameters.

• Age-based model captures additional disease dynamics without
losing identifiability properties.
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