The p-adic Numbers

Uyen Tran

(University of Nebraska - Lincoln)

Why?

Polynomials Over \mathbb{C}

- Rational functions

$$
f(x)=\frac{p(x)}{q(x)}, \quad q(x) \neq 0
$$

- Any polynomial over \mathbb{C} can be written of a unique product of the form:

$$
P(x)=c\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{m}\right)
$$

- We can consider $(x-\alpha)$ as a "prime" in the set of polynomials over \mathbb{C}.
- Question: We can rewrite any polynomials as a power series around $(x-\alpha)$. Can we do something like that with integers and prime numbers?
$P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}=\sum_{i \geq 0} b_{i}(x-\alpha)^{i}$

Integers

- Rational numbers

$$
q=\frac{a}{b}, \quad a, b \in \mathbb{Z}, b \neq 0
$$

- Any integer can be written as a product of prime numbers:

$$
a=p_{1} p_{2} \ldots p_{n}
$$

- Answer: Yes!

$$
\begin{gathered}
321=3 \times 10^{2}+2 \times 10+1 \\
321=6 \times 7^{2}+3 \times 7+6
\end{gathered}
$$

p-adic number!

What are p-adic numbers?

Defn: Fix a prime number p. A \boldsymbol{p}-adic number is a formal sum of the form:

$$
\boldsymbol{a}_{n_{0}} \boldsymbol{p}^{n_{0}}+\boldsymbol{a}_{n_{0}+1} \boldsymbol{p}^{n_{0}+\mathbf{1}}+\cdots \quad \text { where } a_{i} \in\{0,1, \ldots, p-1\} \text { for all } i
$$

Examples:

- $p=3,1+2 \times 3$
- $p=5,2 \times 5^{-1}+1 \times 5$
- $p=5,4+4 \times 5+4 \times 5^{2}+4 \times 5^{3}+\cdots$

Notes:

- Formal sum: Don't try to put it into a calculator!
- n_{0} can be zero, or a positive integer, or a negative integer.
- Ap-adic number could be a finite or infinite expression.

Addition and Multiplication

Fix a prime number p. Given two p-adic numbers $x=\sum_{i \geq n_{0}} a_{i} p^{i}, y=\sum_{j \geq m_{0}} b_{j} p^{j}$.

- Addition:

$$
x+y=\sum_{i \geq n_{0}}\left(a_{i}+b_{i}\right) \boldsymbol{p}^{i}
$$

- Multiplication:

$$
x y=\sum_{k \geq n_{0}+m_{0}}\left(\sum_{i+j=k} a_{i} b_{j}\right) p^{k}
$$

- Example: Fix $p=5, x=1+3 \times 5, y=2+1 \times 5$

$$
x+y=(1+2)+(3+1) \times 5=3+4 \times 5
$$

p-adic absolute value

Defn: Fix a prime number p. Given a p-adic number $x=a_{n_{0}} p^{n_{0}}+a_{n_{0}+1} p^{n_{0}+1}+\cdots$, The \boldsymbol{p}-adic absolute value of \boldsymbol{x}, denoted $|x|_{p}$, is

$$
|x|_{p}=\frac{1}{p^{n}}
$$

where p^{n} is the first power of p that has a non-zero coefficient.
Examples:

- $p=5, x=2 p+4 p^{2}+4 p^{6}$, then $|x|_{5}=\frac{1}{p}$.
- $p=5, x=1+3 p+3 p^{2}$, then $|x|_{5}=\frac{1}{p^{0}}$.

p-derivations

p-derivations

Fix a prime number p.
Let R be a ring where $p=1+\cdots+1$ is not a zero-divisor.

A function $\delta: R \rightarrow R$ is a \boldsymbol{p}-derivation if

- $\delta(1)=0$
- $\delta(a b)=\delta(a) b^{p}+a^{p} \delta(b)+p \delta(a) \delta(b)$
- $\delta(a+b)=\delta(a)+\delta(b)+\frac{a^{p}+b^{p}-(a+b)^{p}}{p}$

Derivatives of polynomials

Recall that derivatives of polynomials also have a similar set of rules:

- $\frac{d}{d x}(1)=0$
- $\frac{d}{d x}(f(x) g(x))=g(x) \frac{d}{d x}(f(x))+f(x) \frac{d}{d x}(g(x))$
- $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))$

p-derivations

p-derivations

Derivatives of polynomials

- Following the rules, we find the unique p derivation over the integers is the function delta $\delta: \mathbb{Z} \rightarrow \mathbb{Z}$ given by

$$
\delta(n)=\frac{n-n^{p}}{p}
$$

- If the highest power of p that divides n is greater than 0 , taking the p-derivation of n will decrease that higher power of p that divides n by 1 .
- Example:

$$
\operatorname{Fix} p=2, \delta(6)=\frac{6-36}{2}=-15
$$

- If the degree of a polynomial is not zero, taking the derivative of that polynomial will decrease the degree by one.

Thank You :)

