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Introduction

My research involved looking into fractional coloring.

We found a bound on the fractional chromatic number of a
graph using its eigenvalues:
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It is based off of Hoffman’s Lower Bound for the chromatic
number.



Graph Coloring

Recall regular graph coloring. We color vertices so adjacent
vertices have different colors.

For a graph G, then the chromatic number x(G) is the smallest
number of colors that can make a proper coloring of G.

Figure: Diamond



Graph Coloring

Consider Cg and Cs. We see that

X(Cs) =2, x(Cs)=3

Figure: Even Cycle Cg 0Odd Cycle Cs



Fractional Graph Coloring

Fractional graph coloring assigns b colors to each vertex, and
adjacent vertices must have disjoint sets of colors.

The b-fold chromatic number x,(G) is the smallest number of
colors that can make a proper coloring of G.

Figure: Complete Graph Ky



Fractional Graph Coloring

Consider Cg and Cs. And let b = 2. Then

X6(Cs) =4, xp(Cs) =5

Figure: Even Cycle Cg 0dd Cycle Cs



Fractional Graph Coloring

The fractional chromatic number x/(G) is defined as




Examples
Consider Cg and Cs. And let b = 2. Recall

Xo(Cs) = 4, x(Cs) =5

Figure: Even Cycle Cq 0Odd Cycle Cs
We divide x,(Cs) and x,(Cs) by b = 2, and see that

5
Xr(Cs) = 2, x7(Cs) = >



Strong Product

We found that coloring the strong product of G and K, is
analogous to using fractional coloring with G. Let b = 3.

Figure: G

This allows us to apply more coloring results to fractional
coloring.



Hoffman’s Lower Bound

Hoffman’s Lower Bound (HLB) gives a lower bound for the
value of x(G) using the eigenvalues of G.

The eigenvalues of G are \; > A\, > ... > A,
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Thanks to the strong product, we can apply this to fractional
coloring!



We found a fractional version of Hoffman’s Lower Bound,
which gives a lower bound for the value of x,(G) using the
eigenvalues of G.
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Recall HLB: x(G) > 1 + l%

We solve for the eigenvalues of G ® K.
Then, using HLB and the strong product, we find
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Recall that there is always a finite b where x/(G) = X”IEG). We
will represent this ideal value for b as b*.
So,
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Now we plug this into x;(G) = @ to find a bound on x/(G).

(Divide both sides by b*.) We get
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Examples

Consider Cg and Cs.

Figure: Even Cycle Cq 0Odd Cycle Cs

Recall, 5
Xr(Cs) = 2,x:(C5) = 5



Recall,
5
Xr(Ce) = 2,xs(Cs) = 5
The largest and smallest eigenvalues of Cg and Cs are,
respectively,
—v5—1
2, —2,and 2, \/_T
When we use our bound, we get that, respectively,
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We see that the actual values fit these inequalities.



How can we tell what b* 1s?
How helpful is this bound?
What other lower bounds can we find?

What else can we do with the connection to the strong product?
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