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Abstract. The Euler-Cauchy differential equation and difference equation are well
known. Here we study a more general Euler-Cauchy dynamic equation. For this more
general equation when we have complex roots of the corresponding characteristic
equation we for the first time write solutions of this dynamic equation in terms of
a generalized exponential function and generalized sine and cosine functions. This
result is even new in the difference equation case. We then spend most of our time
studying the oscillation properties of the Euler-Cauchy dynamic equation. Several
oscillation results are given and an open problem is posed.

1. Introduction. In this paper we will assume that the reader is familiar with
the elementary concepts and notation used in the calculus on time scales (see, for
example, Bohner and Peterson [2]). We are concerned with the so-called Euler–
Cauchy dynamic equation

σ(t)tx∆∆ + atx∆ + bx = 0, (1)

on a time scale T (closed subset of the reals R), where we assume t0 = inf T > 0.
We will assume throughout the regressivity condition

σ(t)t − atµ(t) + bµ2(t) 6= 0 (2)

for t ∈ T
κ. The equation

λ2 + aλ + b = 0 (3)

is called the characteristic equation of the Euler–Cauchy dynamic equation (1) and
the roots of (3) are called the characteristic roots of (1). We now give an alternate
shorter proof of Theorems 3.63 and 3.66 in [2]. (Our proof combines the proofs of
these two theorems in a novel way.)

Theorem 1. Assume λ1, λ2 are solutions of the chacteristic equation (3). If λ1 6=
λ2, then

x(t) = c1eλ1
t

(t, t0) + c2eλ2
t

(t, t0)

is a general solution of (1). If λ1 = λ2, then

x(t) = c1eλ1
t

(t, t0) + c2eλ1
t

(t, t0)

∫ t

t0

1

s + λ1µ(s)
∆s

is a general solution of (1).
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Proof. Note if we let D denote the Delta–derivative operator with respect to t, then
the Euler–Cauchy dynamic equation (1) can be written in the factored form

(tD − λ2)(tD − λ1)x = 0. (4)

This factorization was noted by Akin–Bohner and Bohner ([1] and [3], Chapter 2)
when they discovered how to define the n-th order Euler–Cauchy dynamic equation.
Assume that x is a solution of the dynamic equation (4) and let

y = (tD − λ1)x, (5)

then by (4), y is a solution of

(tD − λ2)y = 0,

which is equivalent to the dynamic equation

y∆ =
λ2

t
y. (6)

The regressivity condition (2) ensures that λ1

t
, λ2

t
∈ R, where R is the regressive

group [2], page 58. Hence the dynamic equation (6) is regressive and so we get

y(t) = c2eλ2
t

(t, t0).

It follows from (5) that x satisfies the dynamic equation

(tD − λ1)x = c2eλ2
t

(t, t0),

or equivalently

(D − λ1

t
)x = c2

1

t
eλ2

t

(t, t0). (7)

Using the variation of constants formula [2], page 77, we get that

x(t) = c1eλ1
t

(t, t0) + c2

∫ t

t0

eλ1
t

(t, σ(s))

(

1

s
eλ2

t

(s, t0)

)

∆s

= c1eλ1
t

(t, t0) + c2eλ1
t

(t, t0)

∫ t

t0

1

s
eλ1

t

(t0, σ(s))eλ2
t

(s, t0)∆s

= c1eλ1
t

(t, t0) + c2eλ1
t

(t, t0)

∫ t

t0

1

s
e
	

λ1
t

(σ(s), t0)eλ2
t

(s, t0)∆s

= c1eλ1
t

(t, t0) + c2eλ1
t

(t, t0)

∫ t

t0

1

s + λ1µ(s)
e
	

λ1
t

(s, t0)eλ2
t

(s, t0)∆s

= c1eλ1
t

(t, t0) + c2eλ1
t

(t, t0)

∫ t

t0

1

s + λ1µ(s)
eλ2

t
	

λ1
t

(s, t0)∆s.

First note that if λ1 = λ2, then we get the desired result that

x(t) = c1eλ1
t

(t, t0) + c2eλ1
t

(t, t0)

∫ t

t0

1

s + λ1µ(s)
∆s.

Next assume that λ1 6= λ2, then using the formula
∫ t

t0

1

s + λ1µ(s)
eλ2

t
	

λ1
t

(s, t0)∆s =
1

λ2 − λ1

[

eλ2
t
	

λ1
t

(t, t0) − 1
]

we are led to the final result.
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Next we would like to show that if our characteristic roots are complex, then
there is a nice form for all real-valued solutions of the Euler–Cauchy dynamic equa-
tion in terms of the generalized exponential and trigonometric functions. Even in
the difference equations case the complex roots are not considered (see Kelley and
Peterson [7]).

Theorem 2. Assume that the characteristic roots of (1) are complex, that is λ1,2 =

α ± iβ, where β > 0, and α
t
, β

t+αµ(t) ∈ R. Then

x(t) = c1eα
t
(t, t0) cos β

t+αµ(t)
(t, t0) + c2eα

t
(t, t0) sin β

t+αµ(t)
(t, t0)

is a general solution of the Euler–Cauchy dynamic equation (1).

Proof. Assume λ1,2 = α ± iβ, where β > 0, are the characteristic roots. Then by
Theorem 1,

eα+iβ
t

(t, t0), eα−iβ
t

(t, t0)

are solutions of (1). We want to find β̃ so that

α

t
+ i

β

t
=

α

t
⊕ i

β̃

t
. (8)

Solving this equation we get

β̃

t
=

β

t + αµ(t)
. (9)

Hence if β̃ is defined by (9), then (8) holds. Similarly

α

t
− i

β

t
=

α

t
⊕ (−i)

β̃

t
.

It follows that

x1(t) =
1

2
eα+iβ

t
(t, t0) +

1

2
eα−iβ

t
(t, t0)

=
1

2
eα

t
⊕i

β̃
t

(t, t0) +
1

2
eα

t
⊕(− iβ̃

t
)
(t, t0)

= eα
t
(t, t0)

(

e
i

β̃
t

(t, t0) + e
−i

β̃
t

(t, t0)

2

)

= eα
t
(t, t0) cos β̃

t

(t, t0)

= eα
t
(t, t0) cos β

t+αµ(t)
(t, t0)

is a solution. Similarly

x2(t) = eα
t
(t, t0) sin β

t+αµ(t)
(t, t0)

is a solution. Since x1, x2 are linearly independent solutions on T we get the desired
result.

2. Oscillation Results. In this section we will be concerned with the oscillation
of the Euler–Cauchy dynamic equation (1). We assume throughout this section
that T is now unbounded above. We now show if the characteristic roots of (1) are
complex how a general solution can be written in terms of the classical exponential
function and classical trigonometric functions.
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Lemma 1. If the characteristic roots are complex, that is λ1,2 = α ± iβ, where

β > 0, then

x(t) = A(t) (c1 cosB(t) + c2 sin B(t)) ,

where

A(t) = e
∫

t

t0
<(ξµ(τ)( α+iβ

τ ))∆τ
, B(t) =

∫ t

t0

=
(

ξµ(τ)

(

α + iβ

τ

))

∆τ (10)

is a general solution of the Euler–Cauchy dynamic equation (1). If, in addition,

every point in T is isolated, then for t ∈ T,

A(t) =

ρ(t)
∏

τ=t0

1

τ

√

((τ + µ(τ)α)2 + β2µ2(t)), B(t) =

ρ(t)
∑

τ=t0

Arctan

(

βµ(τ)

τ + αµ(τ)

)

.

Proof. Note that (see page 59, Bohner and Peterson [2]) the generalized exponential

eα+iβ
t

(t, t0) = e
∫

t

t0
ξµ(τ)(α+iβ

τ )∆τ

= e
∫

t

t0
<(ξµ(τ)(α+iβ

τ ))+i=(ξµ(τ)(α+iβ
τ ))∆τ

= A(t)eiB(t)

= A(t) (cosB(t) + i sin B(t)) .

It follows that the imaginary part and real part

x1(t) := A(t) cos B(t), x2(t) := A(t) sin B(t)

are solutions of (1). Since they can be shown to be linearly independent on T the
result follows.
Now assume that every point in T is isolated, then

ξµ(τ)

(

α + iβ

τ

)

=
1

µ(τ)
Log

(

1 + µ(τ)
α + iβ

τ

)

=
1

µ(τ)
log

∣

∣

∣

∣

τ + αµ(τ)

τ
+ i

βµ(τ)

τ

∣

∣

∣

∣

+
i

µ(τ)
Arg

(

τ + αµ(τ)

τ
+ i

βµ(τ)

τ

)

=
1

µ(τ)
log

(

1

τ

√

(τ + αµ(τ))2 + β2µ2(τ)

)

+
i

µ(τ)
Arctan

(

βµ(τ)

τ + αµ(τ)

)

.

Hence

<
(

ξµ(τ)

(

α + iβ

τ

))

=
1

µ(τ)
log

(

1

τ

√

(τ + αµ(τ))2 + β2µ2(τ)

)

(11)

and

=
(

ξµ(τ)

(

α + iβ

τ

))

=
1

µ(τ)
Arctan

(

βµ(τ)

τ + αµ(τ)

)

. (12)
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It follows from (10) and (11) that

A(t) = e
∫

t

t0

1
µ(τ) log

(

1
τ

√
(τ+αµ(τ))2+β2µ2(τ)

)

∆τ

= e
∑ρ(t)

τ=t0
log
(

1
τ

√
(τ+αµ(τ))2+β2µ2(τ)

)

=

ρ(t)
∏

τ=t0

(

1

τ

√

(τ + αµ(τ))2 + β2µ2(τ)

)

.

It follows from (10) and (12) that

B(t) =

∫ t

t0

1

µ(τ)
Arctan

(

βµ(τ)

τ + αµ(τ)

)

∆τ

=

ρ(t)
∑

τ=t0

Arctan

(

βµ(τ)

τ + αµ(τ)

)

,

which is the desired result.

Definition 1. If the characteristic roots of (1) are complex, then we say the Euler–
Cauchy dynamic equation (1) is oscillatory iff B(t) is unbounded.

As a well-known example note that if T is the real interval [1,∞) and the Euler–
Cauchy equation has complex roots, then the Euler–Cauchy equation is oscillatory.
This follows from what we said here because in this case by (10)

B(t) = β

∫ t

1

1

τ
dτ = β log t

which is unbounded. If T = qN0 , where q > 1, then by Lemma 1

B(t) =

ρ(t)
∑

τ=1

Arctan

(

βµ(t)

τ + αµ(τ)

)

=

ρ(t)
∑

τ=1

Arctan

(

β(q − 1)

1 + α(q − 1)

)

=

(

t − 1

q − 1

)

Arctan

(

β(q − 1)

1 + α(q − 1)

)

,

which is unbounded and hence the Euler–Cauchy dynamic equation on T = qN0 is
oscillatory when the characteristuc roots are complex. If T = N, then

B(t) =

t−1
∑

k=1

Arctan

(

β

k + α

)

,

which can be shown to be unbounded and hence the Euler–Cauchy dynamic equa-
tion on T = N is oscillatory when the characteristuc roots are complex. These last
two examples where shown in Bohner and Saker [4], Erbe, Peterson, and Saker [6],
and Erbe and Peterson [5], but here we established these results directly.

Theorem 3 (Comparison Theorem). Let T1 := {t0, t1, · · · } and T2 := {s0, s1, · · · },
where {tn} and {sn} are strictly increasing sequences of positive numbers with limit

∞. If the Euler–Cauchy equation (1) on T1 is oscillatory and −α < sn

µ(sn) ≤ tn

µ(tn) ,

for n ≥ 0, then the Euler–Cauchy equation (1) on T2 is oscillatory.
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Proof. Since sn

µ(sn) ≤ tn

µ(tn) , for n ≥ 0, we have that

sn

µ(sn)
+ α ≤ tn

µ(tn)
+ α

for n ≥ 0, and therefore (using −α < sn

µ(sn) )

0 <
sn + µ(sn)α

µ(sn)
≤ tn + µ(tn)α

µ(tn)

for n ≥ 0. Taking reciprocals and multiplying by β we obtain

βµ(sn)

sn + µ(sn)α
≥ βµ(tn)

tn + µ(tn)α
.

This implies that

Arctan

(

βµ(sn)

sn + αµ(sn)

)

≥ Arctan

(

βµ(tn)

tn + αµ(tn)

)

for n ≥ 0. This implies that

B2(s) = B2(sn) :=

n−1
∑

k=0

Arctan

(

βµ(sk)

sk + αµ(sk)

)

≥ B1(t) = B1(tn) :=

n−1
∑

k=0

Arctan

(

βµ(tk)

tk + αµ(tk)

)

.

Since we are assuming that the Euler–Cauchy equation (1) is oscillatory on T1 we get
that limn→∞ B1(sn) = ∞ and therefore from the above inequality limn→∞ B2(tn) =
∞, which implies that the Euler–Cauchy equation (1) is oscillatory on T2.

Theorem 4. Assume every point in the time scale T is isolated and limt→∞
t

µ(t)

exists as a finite number, then the Euler–Cauchy equation in the complex charac-

teristic roots case is oscillatory on T.

Proof. In this case

lim
t→∞

B(t) =

∞
∑

τ=t0

Arctan

(

βµ(τ)

τ + µ(τ)α

)

=

∞
∑

τ=t0

Arctan

(

β
τ

µ(τ) + α

)

.

It follows that B(t) is unbounded and hence the Euler–Cauchy equation in the
complex characteristic roots case is oscillatory on T

Theorem 4 does not cover the case when T is a time scale where limt→∞
t

µ(t) = ∞.

The next theorem considers a time scale where limt→∞
t

µ(t) = ∞.

Theorem 5. Let p ≥ 0 and let Tp := {tn : t0 = 1, tn+1 = tn + 1
t
p
n
, n ∈ N0}. In

the complex characteristic roots case, the Euler–Cauchy dynamic equation (1) is

oscillatory on Tp.
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Proof. If p = 0, then T = N and the result was proved earlier in this paper. Assume
p > 0. Since

tn+1 = tn +
1

t
p
n

, (13)

for n ∈ N0, the sequence {tn} is strictly increasing. Assume limn→∞ tn = L, where
L is a positive constant. Then from (13) we get

L = L +
1

Lp

and this implies that 0 = 1
LP , which is a contradiction, which proves that the

sequence {tn} is unbounded above. Now for k ∈ N0 pick Nk so that tNk
is the

smallest element in T that is in the real interval [k, k + 1). Then for Nk ≤ j ≤
Nk+1 − 1,

k ≤ yj < k + 1.

Note that Nk+1 − Nk is the number of elements of T in the real interval [k, k + 1).
Since

1

k + 1
<

1

yj

≤ 1

k

and since yj+1 = yj + 1
y

p
j

we have that

1

(k + 1)p
< µ(yj) =

1

y
p
j

≤ 1

kp
.

Therefore
kp ≤ Nk+1 − Nk ≤ (k + 1)p.

Consider

B(t) = B(tn) =

n−1
∑

j=0

Arctan

(

βµ(tj)

tj + µ(tj)α

)

=

n−1
∑

j=0

Arctan

(

β

t
p+1
j + α

)

.

To prove that (1) is oscillatory it suffices to show that

∞
∑

j=0

Arctan

(

1

t
p+1
j

)

= ∞.

To show this note that
∞
∑

j=0

Arctan

(

1

t
p+1
j

)

≥
∞
∑

j=0

(

1

t
p+1
j

− 1

3t
3(p+1)
j

)

=
∞
∑

k=0

Nk+1−Nk−1
∑

j=Nk

(

1

t
p+1
j

− 1

3t
3(p+1)
j

)

≥
∞
∑

k=0

(

kp

(k + 1)p+1
− (k + 1)p

3k3(p+1)

)

= ∞.
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One might think that one could use the argument in the proof of Theorem 5 to show
that if there is an increasing unbounded sequence of points {tj} in T with µ(tj) = 1

t
p
j

,

then the Euler–Cauchy equation (1) is oscillatory on T in the complex characteristic
roots case. The following example shows that the same type of argument does not
work.

Example 1. Assume that the Euler–Cauchy dynamic equation (1) has complex

characteristic roots α ± iβ, β > 0 and T := ∪∞
n=1[(n − 1)2 + 1, n2]. To see if (1) is

oscillatory or not in this case we have by (10)

lim
t→∞

B(t) =

∫ ∞

1

=
(

ξµ(τ)

(

α + iβ

τ

))

∆τ

=

∞
∑

n=1

∫ n2+1

n2

=
(

ξµ(τ)

(

α + iβ

τ

))

∆τ

+
∞
∑

n=1

∫ (n+1)2

n2+1

=
(

ξµ(τ)

(

α + iβ

τ

))

dτ. (14)

Consider the first term on the right hand side of equation (14). This is the term we

get by looking at the right scattered points in T. Note that for n0 sufficiently large

∞
∑

n=1

∫ n2+1

n2

=
(

ξµ(τ)

(

α + iβ

τ

))

∆τ

=
∞
∑

n=1

Arctan

(

βµ(n2)

n2 + µ(n2)α

)

=

∞
∑

n=1

Arctan

(

β

n2 + α

)

=

n0−1
∑

n=1

Arctan

(

β

n2 + α

)

+

∞
∑

n=n0

Arctan

(

β

n2 + α

)

≤
n0−1
∑

n=1

Arctan

(

β

n2 + α

)

+

∞
∑

n=n0

(

β

n2 + α

)

< ∞.

Hence unlike in the proof of Theorem 5 we do not get that this term corresponding

to the right-scattered points is infinite. But now consider the second term on the
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right hand side of equation (14)

∞
∑

n=1

∫ (n+1)2

n2+1

=
(

ξµ(τ)

(

α + iβ

τ

))

dτ

=

∞
∑

n=1

∫ (n+1)2

n2+1

=
(

α + iβ

τ

)

dτ

=
∞
∑

n=1

∫ (n+1)2

n2+1

(

β

τ

)

dτ

= β

∞
∑

n=1

log

(

(n + 1)2

n2 + 1

)

= β log 2 + β

∞
∑

n=2

log

(

(n + 1)2

n2 + 1

)

= β log 2 + β

∞
∑

n=2

log

(

1 +
2n

n2 + 1

)

≥ β log 2 + β

∞
∑

n=2

(

2n

n2 + 1
− 2n2

(n2 + 1)2

)

= ∞.

Hence we get that our equation is oscillatory.

Conjecture 1. If the time scale T is an unbounded subset of the real interval

(0,∞) and the Euler–Cauchy equation (1) has complex characteristic roots, then

(1) is oscillatory on T.
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