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1. Some Preliminaries on time scales

A recent cover story in “New Scientist,” [3] reports of many important
applications concerning dynamic equations on time scales. Some of these
applications include a model of the West Nile virus, of electrical activity in
the heart, of the stock market, of combustion in engines, of bulimia and of
population models that vary in continuous time and discrete time, as well
as the study of the interfaces of nanoscale structures embedded in other
materials.

A time scale T is an arbitrary nonempty closed subset of the real numbers
R. Examples include R, the integers Z, the harmonic numbers {Hn}∞0 where

H0 = 0 and Hn =
∑n

i=1
1
i
, and qZ = {0} ∪ {qn|n ∈ Z} where q > 1. On any

time scale T we define the forward and backward jump operators by:

(1.1) σ(t) := inf{s ∈ T| s > t}, ρ(t) := sup{s ∈ T| s < t},
where inf ∅ := sup T and sup ∅ := inf T. A point t ∈ T, t > inf T, is said to
be left-dense if ρ(t) = t, right-dense if t < sup T and σ(t) = t, left-scattered
if ρ(t) < t and right-scattered if σ(t) > t. A time scale T is said to be
an isolated time scale provided given any t ∈ T, there is a δ > 0 such that
(t−δ, t+δ)∩T = {t}. The graininess function µ for a time scale T is defined
by µ(t) := σ(t)− t. The set T

κ is derived from the time scale T as follows: If
T has a left-scattered maximum m, then T

κ = T−{m}. Otherwise, T
κ = T.

Note that in the case T = R we have

σ(t) = ρ(t) = t, µ(t) ≡ 0

1This work was done during the summer of 2003 at the REU site University of
Nebraska-Lincoln, NSF grant number 25-0517-0041-001, under the guidance of Dr. Allan
Peterson.
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for T = Z we have

σ(t) = t + 1, ρ(t) = t − 1, µ(t) ≡ 1,

for the case qN = {qn|n ∈ N} we have

σ(t) = qt, ρ(t) =
t

q
, µ(t) = (q − 1)t,

and for the time scale N
b
0 := {nb|n ∈ N0} where b ∈ N,

σ(t) = (t
1
b + 1)b, ρ(t) = (t

1
b − 1)b, µ(t) =

b−1∑

k=0

(
b

k

)

t
k
b .

For a function f : T → R the (delta) derivative f∆(t) at t ∈ T
κ is defined

to be the number f∆(t) (provided it exists) with the property such that
given any ε > 0, there exists a neighborhood U of t such that
∣
∣ [f(σ(t)) − f(s)] − f∆(t)(σ(t) − s)

∣
∣ ≤ ε|σ(t) − s| for all s ∈ T ∩ U.

The delta derivative is given by

(1.2) f∆(t) =
f(σ(t)) − f(t)

µ(t)

if f is continuous at t and t is right-scattered. If t is right-dense then the
derivative is given by

(1.3) f∆(t) = lim
s→t

f(σ(t)) − f(s)

t − s
= lim

s→t

f(t) − f(s)

t − s
,

provided this limit exists. This definition can be generalized to the case
where the range of f is any Banach space. A function f : T → R is said to
be right–dense continuous (rd-continuous) if it is continuous at each right–
dense point and there exists a finite left limit at all left–dense points, and
f is said to be differentiable if its derivative exists. A useful formula is

(1.4) fσ := f ◦ σ = f + µf∆.

For a, b ∈ T, and a differentiable function F, the Cauchy integral of
F∆ = f is defined by

∫ b

a

f(t)∆t =

∫ b

a

F∆(t)∆t = F (b) − F (a).

We shall make particular use of the formula

(1.5)

∫ b

a

f(t)∆t =
∑

s∈[a,b)

f(s)µ(s), a < b

(see [1]) which holds for isolated time scales.
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We say that a function p : T → R is regressive provided

1 + µ(t)p(t) 6= 0, t ∈ T.

It turns out that the set of all regressive functions on a time scale T

forms an Abelian group (see Theorem 2.7 and Exercise 2.26 in [1]) under
the addition ⊕ defined by

p ⊕ q := p + q + µpq

and the inverse 	p of the function p is defined by

	p :=
−p

1 + µp
.

We denote the set of all f : T → R which are rd–continuous and regressive
by R. If p ∈ R, then we can define the exponential function by

ep(t, s) := exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)

for t ∈ T, s ∈ T
k, where ξh(z) is the cylinder transformation, which is given

by

ξh(z) =

{
Log(1+hz)

h
, h 6= 0,

z, h = 0.

where Log denotes the principal logarithm function. Alternately, for p ∈ R
one can define the exponential function ep(·, t0), to be the unique solution
of the IVP

x∆ = p(t)x, x(t0) = 1.

We define
R+ := {f ∈ R : 1 + µ(t)f(t) > 0, t ∈ T}.

We shall be making heavy use of the properties

(1) e0(t, s) ≡ 1, ep(t, t) ≡ 1
(2) ep(σ(t), t0) = [1 + µ(t)p(t)]ep(t, t0)
(3) 1

ep(t,t0)
= e	p(t, t0) = ep(t0, t)

(4) ep(t, t0)eq(t, t0) = ep⊕q(t, t0)
(5) ep(t, r)ep(r, s) = ep(t, s)

where p, q ∈ R (see Bohner and Peterson [1]).
Also if p ∈ R, then ep(t, s) is real-valued and nonzero on T. If p ∈ R+,

then ep(t, t0) is always positive. For α ∈ R, on the respective time scales,
the exponential eα(t, t0) is

R : eα(t−t0)

hZ : (1 + αh)
t−t0

h

qZ :
∏

s∈[t0, t)[1 + (q − 1)αs], t > t0
{Hn}∞0 :

(
n+α−t0

n−t0

)
, t =

∑n

k=1
1
k
.
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2. General Results

We will be principally concerned with the dynamic equation

(2.1) yσ − p(t)y = r(t), t ∈ T
κ

on isolated time scales, where p(t) 6= 0, ∀t ∈ T
κ. In particular, solutions

of the corresponding homogeneous problem uσ − p(t)u = 0 can be used to
find explicit forms for generalized exponential functions on a particular time
scale.

We begin by finding a variation of constants formula for (2.1).

Theorem 2.1. Variation of Constants for First Order Recurrence

Relations Assume p(t) 6= 0, ∀t ∈ T
κ. Then the unique solution to the IVP

yσ − p(t)y = r(t), y(t0) = y0

is given by

y(t) = e p−1
µ

(t, t0)y0 +

∫ t

t0

e p−1
µ

(t, σ(s))
r(s)

µ(s)
∆s.

We shall now give two proofs, one approaching the problem as a first
order dynamic equation, and a second following a method used in the study
of difference equations.

Proof. Using formula (1.4), we may rewrite the corresponding homogeneous
equation as follows:

uσ = p(t)u

u + µ(t)u∆ = p(t)u

µ(t)u∆ = (p(t) − 1)u

u∆ =
p(t) − 1

µ(t)
u

and so by the definition of the generalized exponential as the solution of an
IVP, we get that

(2.2) u(t) = e p−1
µ

(t, t0)u0

where u0 = u(t0). Using the variation of constants formula found in Bohner
and Peterson [1], we find the general solution to equation (2.1) is

(2.3) y(t) = e p−1
µ

(t, t0)y0 +

∫ t

t0

e p−1
µ

(t, σ(s))
r(s)

µ(s)
∆s

where the arguments have been supressed in the subscripts, or alternately

(2.4) y(t) = e p−1
µ

(t, t0)

(

y0 +

∫ t

t0

r(s)

µ(s)p(s)e p−1
µ

(s, t0)
∆s

)

.
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We now derive the variation of constants formula using a method analo-
gous to that used in the difference equations case. First we prove a lemma.

Lemma 2.1. The exponential function e p−1
µ

(t, t0) is given by

e p−1
µ

(t, t0) =

{ ∏

τ∈[t0, t) p(τ), t ≥ t0
∏

τ∈[t, t0)
1

p(τ)
, t < t0

.

Proof. Since the exponential e p−1
µ

(t, t0) is the unique solution to uσ = p(t)u

with u(t0) = 1 , we note that
∏

τ∈[t0, t0) p(τ) = 1 using the convention that
an empty product is the identity, and for t > t0 one may simply iterate the
formula uσ = p(t)u. The case t < t0 is similar. �

Consider the dynamic equation yσ − p(t)y = r(t) where p, r ∈ Crd and
p(t) 6= 0, ∀t ∈ T, and let u be a nonzero solution of the corresponding
homogeneous equation uσ = p(t)u which by Lemma 2.1 is

∏

τ∈[t0, t) p(τ).

Let us assume that y is a solution to (2.1) and now divide (2.1) by uσ(t)µ(t)
to get

yσ(t)

uσ(t)µ(t)
− p(t)y(t)

uσ(t)µ(t)
=

r(t)

uσ(t)µ(t)
.

Hence

yσ(t)

uσ(t)µ(t)
− p(t)y(t)

uσ(t)µ(t)
=

yσ(t)
uσ(t)

− y(t)
u(t)

µ(t)
=

(
y(t)

u(t)

)∆

=
r(t)

uσ(t)µ(t)
.

Now, we may integrate both sides from t0 to t to find that

y(t)

u(t)
− y0

u0

=

∫ t

t0

r(s)

uσ(s)µ(s)
∆s

and thus we have

y(t) = u(t)

(

y0 +

∫ t

t0

r(s)

uσ(s)µ(s)

)

∆s

which, upon noting u(t) = e p−1
µ

(t, t0)u0, is exactly (2.3). �

See Examples 3.1, 3.2, 3.4, and 3.7 for simple applications of the variation
of constants formula.

For the case T = Z, we know in the study of difference equations (see [2])
that the solution to the problem y(t + 1) − p(t)y(t) = r(t) is

(2.5) u(t)

(

y0 +
∑ r(t)

u(t + 1)

)

where u(t) is a nonzero solution to u(t + 1) = p(t)u(t). However, by the
definition of the generalized exponential, this function u(t) is a constant
multiple of the exponential e p−1

µ
(t, t0), and p(t)e p−1

µ
(t, t0) = eσ

p−1
µ

(t, t0). Since
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on Z we have µ ≡ 1, the Cauchy integral is exactly an indefinite sum, and
thus

u(t)

(

y0 +
∑ r(t)

u(t + 1)

)

= e p−1
µ

(t, t0)



y0 +
∑ r(s)

eσ
p−1

µ

(s, t0)





= e p−1
µ

(t, t0)



y0 +

∫
r(s)

µ(s)eσ
p−1

µ

(s, t0)
∆s





= e p−1
µ

(t, t0)

(

y0 +

∫
r(s)

µ(s)p(s)e p−1
µ

(s, t0)
∆s

)

.

Theorem 2.2. Factorization A solution to the dynamic equation uσ =
p(t)u, where p(t) = p1(t)p2(t) . . . pn(t) is

u(t) = e p1p2...pn−1
µ

(t, t0) = e p1−1
µ

(t, t0)e p2−1
µ

(t, t0) . . . e pn−1
µ

(t, t0).

Proof. We note that
a − 1

µ
⊕ b − 1

µ
=

ab − 1

µ
for any a, b, and by induction that

e p1p2...pn−1
µ

(t, t0) = e p1−1
µ

⊕ p2−1
µ

⊕...⊕ pn−1
µ

(t, t0)

= e p1−1
µ

(t, t0)e p2−1
µ

(t, t0) . . . e pn−1
µ

(t, t0).

�

A basic application is given in Example 3.3.

2.1. Series Solution. A useful tool for looking at isolated time scales is
the counting function nt defined

nt(t, s) :=

∫ t

s

∆τ

µ(τ)
.

Note that using (1.5) the values of this function are integers, where the value
of the function nt counts the number of points in the half open interval [s, t)
for t ≥ s and is the negative of the number of points in [t, s) for t < s. On
an isolated time scale, nt(σ

k(s), s) = k, with the conventions σ−k(t) = ρk(t)
and σ0(t) = t. For example, for the time scale N

b, b > 0,

nt(t, s) =
b
√

t − b
√

s

and for qZ the counting function is given by

nt(t, s) =
ln t − ln s

ln q
= logq

(
t

s

)

.
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The counting function provides an enumeration of the time scale which
can be quite useful in formulas for exponential functions, particularly when
considering the product formula for exponentials given in Lemma 2.1. We
use this counting function in the following theorem.

Theorem 2.3. Series Solution The sum

(2.6)
y(sup T)

p(t)pσ(t)pσ2(t) . . . p(sup Tκ)
+

nt(sup Tκ, t)
∑

k=0

−rσk

(t)

p(t)pσ(t)pσ2(t) . . . pσk(t)

is a solution to (2.1) where sup T = max T ∈ R, and if sup T = ∞, then a

solution is given by the infinite series

(2.7) y(t) =

∞∑

k=0

−rσk

(t)

p(t)pσ(t)pσ2(t) . . . pσk(t)

whenever this series converges, where yσk

denotes y(

k times
︷ ︸︸ ︷

σ(σ(. . . (σ( t)) . . .))).

Proof. Observe that equation yσ − p(t)y = r(t) can be re-expressed in the

form y = −r(t)+yσ

p(t)
, and that yσ = −rσ(t)+yσσ

pσ(t)
, and thus y =

−r+−rσ+yσσ

pσ

p
.

Continuing this process,

y(t) =
−r(t) +

−rσ(t)+
−rσ2

(t)+
···+y(sup T)

···

pσ2
(t)

pσ(t)

p(t)
,

when sup T exists, and formally we get

y(t) =
−r(t) +

−rσ(t)+

−rσ2
(t)+

−rσ3
(t)+···

pσ3
(t)

pσ2
(t)

pσ(t)

p(t)

if sup T = ∞.
Consider first the case where sup T is finite. The ascending fraction can

be expanded into the sum

−r(t)

p(t)
+

−rσ(t)

p(t)pσ(t)
+ . . . +

−r(sup T
κ)

p(t)pσ(t) . . . p(sup Tκ)
+

y(sup T)

p(t)pσ(t) . . . p(sup Tκ)
.

Since there is one summand with the function r(t) for each point in the
interval [t, sup T), the number of such summands is nt(sup T, t) and thus
starting our index at zero, these terms combine as

nt(sup T, t)−1
∑

k=0

−rσk

(t)

p(t)pσ(t)pσ2(t) . . . pσk(t)
=

nt(sup T
κ, t)

∑

k=0

−rσk

(t)

p(t)pσ(t)pσ2(t) . . . pσk(t)
.
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For sup T = ∞, formally expanding the ascending continued fraction
yields the infinite series

∞∑

k=0

−rσk

ppσpσ2pσ3 . . . pσk
.

Assume that this infinite series converges for all t ∈ T and denote it by
w(t). Then

w(t) =

∞∑

k=0

−rσk

(t)

p(t)pσ(t)pσ2(t)pσ3(t) . . . pσk(t)

p(t)w(t) = −r(t) +

∞∑

k=1

−rσk

(t)

pσ(t)pσ2(t)pσ3(t) . . . pσk(t)

p(t)w(t) + r(t) =

∞∑

k=1

−rσk

(t)

pσ(t)pσ2(t)pσ3(t) . . . pσk(t)
.

Hence we see that

p(t)w(t) + r(t) =

∞∑

k=1

−rσk

(t)

pσ(t)pσ2(t)pσ3(t) . . . pσk(t)

=

∞∑

k=0

−rσk+1
(t)

pσ(t)pσ2(t)pσ3(t) . . . pσk+1(t)

= wσ(t)

and w(t) is a solution to (2.1). �

We now derive some alternate formulas for the solutions given in Theorem
2.3. We note that

m∏

k=0

pσk

(t) = e p−1
µ

(σm+1(t), t) = pσm

(t)e p−1
µ

(σm(t), t)

by Lemma 2.1, and thus along with (1.5), we see that

nt(t∗, t)∑

k=0

−rσk

(t)

pσ(t)pσ2(t)pσ3(t) . . . pσk(t)
= −

∫ σ(t∗)

t

r(s)

µ(s)p(s)e p−1
µ

(s, t)
∆s.

We may therefore re-express the summations in our theorem with the inte-
grals

−e p−1
µ

(t, t0)

∫ sup T

t

r(s)

µ(s)p(s)e p−1
µ

(s, t0)
∆s
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for sup T finite, and

−e p−1
µ

(t, t0)

∫ ∞

t

r(s)

µ(s)p(s)e p−1
µ

(s, t0)
∆s

for sup T = ∞. Thus we find the initial condition must be

w0 = −
∫ sup T

t0

r(s)

µ(s)p(s)e p−1
µ

(s, t0)
∆s +

y(sup T)

e p−1
µ

(sup T, t0)

when sup T exists, else

w0 =
∞∑

k=0

−rσk

(t0)

p(t0)pσ(t0)pσ2(t0) . . . pσk(t0)
= −

∫ ∞

t0

r(s)

µ(s)p(s)e p−1
µ

(s, t0)
∆s.

On the time scale Z with p(t) = t this leads to a factorial series (see
Example 3.4 in [2]). It is also of interest to consider this series solution on
T = R, where all points are right-dense. Thus the equation yσ−p(t)y = r(t)

becomes simply y − p(t)y = r(t) and y = r(t)
1−p(t)

. The series is then

y(t) =
∞∑

k=0

−r(t)

pk(t)
= −r(t)

∞∑

k=0

1

pk(t)
=

r(t)

1 − p(t)

which is a geometric series which converges for |p(t)| > 1, exactly as we
expected.

3. Examples

In this section we give several examples following from our previous re-
sults. The first two are direct applications of the variation of constants
formula.

Example 3.1. Solve the dynamic equation

(3.1) yσ − qy = q − 1

on the time scale T = qN. In this case p(t) = q, r(t) = q − 1, and µ(t) =
t(q − 1). By the variation of constants formula given in Theorem 2.1, we
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obtain

y(t) = e (q−1)
t(q−1)

(t, t0)y0 +

∫ t

t0

e (q−1)
t(q−1)

(t, σ(τ))
(q − 1)

τ(q − 1)
∆τ

= e 1
t
(t, t0)y0 +

∫ t

t0

e 1
t
(t, t0)e 1

t
(t0, σ(τ))

1

τ
∆τ

= e 1
t
(t, t0)y0 + e 1

t
(t, t0)

∫ t

t0

e 1
t
(t0, σ(τ))

1

τ
∆τ

= e 1
t
(t, t0)y0 + e 1

t
(t, t0)

∫ t

t0

1

qe 1
t
(τ, t0)

1

τ
∆τ.

Note that

	1

t
=

−1
t

1 + 1
t
(tq − t)

=
−1
t

1 + q − 1
=

−1

qt
.

Therefore
∫ t

t0

1

qe 1
t
(τ, t0)

1

τ
∆τ =

∫ t

t0

1

qτ
e	 1

t
(τ, t0)∆τ

= [−e	 1
t
(τ, t0)]

t
t0

= [−e	 1
t
(t, t0) + 1],

and we get that

y(t) = e 1
t
(t, t0)y0 + e 1

t
(t, t0)[−e	 1

t
(t, t0) + 1]

= e 1
t
(t, t0)y0 − 1 + e 1

t
(t, t0)

= (y0 + 1)e 1
t
(t, t0) − 1.

By Lemma 2.1, for t ≥ t0

e 1
t
(t, t0) =

∏

τ∈[t0,t)

q =
qn

qn0
=

t

t0
.

So y(t) = Ct − 1, where C = y0+1
t0

, is a general solution to (3.1).

Example 3.2. Consider the dynamic equation

(3.2) yσ − µ(t)

µ(t + 1)
y = 1

on the so-called time scale T = {Hn}∞n=0 of Harmonic numbers [1]. In this

case p(t) = µ(t)
µ(t+1)

and r(t) = 1. By the variation of constants formula
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(Theorem 2.1), we obtain for t ≥ t0

y(t) = e µ(t)
µ(t+1)

−1

µ(t)

(t, t0)y0 +

∫ t

t0

e µ(t)
µ(t+1)

−1

µ(t)

(t, σ(τ))
1

µ(τ)
∆τ

= eµ(t)−µ(t+1)
µ(t)µ(t+1)

(t, t0)y0 +

∫ t

t0

eµ(t)−µ(t+1)
µ(t)µ(t+1)

(t, σ(τ))
1

µ(τ)
∆τ

= e 1
µ(t+1)

− 1
µ(t)

(t, t0)y0 +

∫ t

t0

e 1
µ(t+1)

− 1
µ(t)

(t, σ(τ))
1

µ(τ)
∆τ.

But µ(t) = 1
n+1

, so

y(t) = e(n+2)−(n+1)(t, t0)y0 +

∫ t

t0

e(n+2)−(n+1)(t, σ(τ))
1

µ(τ)
∆τ

= e1(t, t0)y0 +

∫ t

t0

e1(t, σ(τ))
1

µ(τ)
∆τ

= e1(t, t0)y0 +
∑

s∈[t0,t)

µ(s)e1(t, σ(s))
1

µ(s)

= e1(t, t0)y0 +
∑

s∈[t0,t)

e1(t, σ(s))

= e1(t, t0)y0 +
∑

s∈[t0,t)

e1(t, t0)e1(t0, σ(s))

= e1(t, t0)y0 + e1(t, t0)
∑

s∈[t0,t)

1

e1(σ(s), t0)

= e1(t, t0)



y0 +
∑

s∈[t0,t)

1

e1(σ(s), t0)



 .
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If t0 = 0, then we can use the fact (see page 74 in [1]) that eα(t, t0) =
(

n+α−t0
n−t0

)
where t =

∑n

i=1
1
i

so that

y(t) =

(
n + 1 − 0

n − 0

)


y0 +
∑

s∈[t0,t)

1
(

n+2−0
n+1−0

)





= (n + 1)



y0 +
∑

s∈[t0,t)

1

n + 2





= (n + 1)

(

y0 +

nt∑

k=0

1

k + 2

)

= (n + 1)

(

y0 +
nt∑

k=1

1

k + 1

)

= (n + 1) (y0 + σ(t) − 1) .

Hence a general solution of equation (3.2) is y(t) = (n + 1) (y0 + σ(t) − 1).

Example 3.3. For an example of Theorem 2.2, consider the homogeneous
dynamic equation

(3.3) uσ − (qt2 − q)u = 0

on the time scale T = qN0 . In this case p(t) = (qt2 − q) and µ(t) = (q − 1)t.
But the original equation can be written in the form

uσ − q(t2 − 1)u = 0.

Hence, we can apply Theorem 2.2. Thus it is sufficient to solve for u1(t)
where p1(t) = q and u2(t) where p2(t) = t2−1. So first consider uσ

1−qu1 = 0.
Using equation (2.2), we obtain

u1(t) = e q−1
µ(t)

(t, t0)u0 = e q−1
(q−1)t

(t, t0)u0 = e 1
t
(t, t0)u0.

By Example 3.1, u1(t) = u0
t
t0

.

Next consider uσ
2 − (t2 −1)u2 = 0. As before, by equation (2.2) we obtain

u2(t) = e (t2−1)−1
µ(t)

(t, t0)u0 = e t2−2
(q−1)t

(t, t0)u0.

But by Lemma 2.1,

u2(t) = e t2−2
(q−1)t

(t, t0)u0 = u0

∏

τ∈[t0,t)

(τ 2 − 1).
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Thus, by Theorem 2.2, we can write the general solution of equation (3.3)
as

u(t) = u0e qt2−q−1
(q−1)t

(t, t0) = u0
t

t0

∏

τ∈[t0,t)

(τ 2 − 1).

Example 3.4. By solving initial value problems, in some cases we are able
to find formulas for exponential functions. Consider the nonhomogeneous
IVP

(3.4) yσ − qy = qt+1, y(0) = 0

on the time scale T = Z. In this case p(t) = q, r(t) = qt+1 and µ(t) = 1.
From the variation of constants formula equation (2.2), we obtain

y(t) =

∫ t

0

eq−1(t, σ(τ))qτ+1∆τ

= eq−1(t, 0)

∫ t

0

1

eq−1(σ(τ), 0)
qτ+1∆τ

= eq−1(t, 0)

∫ t

0

1

qeq−1(τ, 0)
qτ+1∆τ

= eq−1(t, 0)

∫ t

0

1

q
e	(q−1)(τ, 0)qτ+1∆τ.

Note that

	(q − 1) =
−(q − 1)

1 + q − 1
=

1 − q

q

and

e 1−q
q

(t, 0) =

(

1 +
1 − q

q

)t

=

(
1

q

)t

.

Hence,

y(t) = eq−1(t, 0)

∫ t

0

1

q

(
1

q

)τ

qτ+1∆τ

= eq−1(t, 0)

∫ t

0

(
1

q

)τ+1

qτ+1∆τ

= eq−1(t, 0)

∫ t

0

1∆τ

= teq−1(t, 0)

= t(1 + q − 1)t

= tqt
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is the solution to the IVP (3.4).
In the next two examples we consider homogeneous IVP’s in order to find

a formula for the respective exponential functions.

Example 3.5. Consider the IVP

(3.5) uσ − 1 +
√

t√
t

u = 0, u(1) = 1

on the time scale T = N
2 := {t| t = n2, n ∈ N}. In this case p(t) = 1+

√
t√

t

and µ(t) = 2
√

t + 1. From equation (2.2), we obtain for t ∈ T = N
2

u(t) = e 1+
√

t√
t

−1

µ(t)

(t, 1)1

= e 1+
√

t√
t

−1

2
√

t+1

(t, 1)

= e 1
2t+

√
t

(t, 1).

Consider the original equation uσ = 1+
√

t√
t

u. By plugging in the appropriate

values of t we find

u(22) =
1 + 1

1
= 2

u(32) =
1 + 2

2
2 = 3

u(42) =
1 + 3

3
3 = 4

u(52) =
1 + 4

4
4 = 5.

In general,

u(t) =
√

t.

Hence,

e 1
2t+

√
t

(t, 1) =
√

t.

Example 3.6. Solve the IVP

(3.6) uσ − 2t2 + 1

2t2 − 1
u = 0, y(1) = 1,
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on the time scale T = N
1
2 = {t = n

1
2 | n ∈ N}. In this case p(t) = 2t2+1

2t2−1
.

From equation (2.2), we obtain for t ∈ T = N
1
2

u(t) = e 2t2+1
2t2−1

−1

µ(t)

(t, 1)(1)

= e 2t2+1−2t2+1
(2t2−1)µ(t)

(t, 1)

= e 2
(2t2−1)µ(t)

(t, 1).

But consider the original equation uσ(t) = 2t2+1
2t2−1

u(t). By plugging in the
appropriate values of t we find

u(2
1
2 ) =

2(1) + 1

2(1) − 1
(1) = 3

u(3
1
2 ) =

2(2) + 1

2(2) − 1
(3) =

5

3
(3) = 5

u(4
1
2 ) =

2(3) + 1

2(3) − 1
(5) =

7

5
(5) = 7

u(5
1
2 ) =

2(4) + 1

2(4) − 1
(7) =

9

7
(7) = 9.

Hence,

e 2
(2t2−1)µ

= 2t2 − 1.

By varying the time and interest rate of an IRA we are able to apply our
variation of constants formula (Theorem 2.1) to find out how much money
will be in the IRA after time t ∈ T.

Example 3.7. Suppose we open an IRA account, initially at time t = 1, in-
vest $2,000 and add an additional $2,000 every time interest is compounded.
Let T = qN0 where t0 = q0 = 1. The interest is compounded every t = qn

years and at a rate of t%. How much will we have in the IRA at time t? How
much would we have at time t = (1.5)5?

Since y(1) = 0, let y(t) be the amount of money after time t = qn.
So

yσ(t) = y(t) + 2000 + .01t(y(t) + 2000)

yσ(t) = (1 + .01t)y(t) + (1 + .01t)2000

(3.7) yσ(t) − (1 + .01t)y(t) = (1 + .01t)2000.
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Hence we get an equation of the form yσ−p(t)y = r(t) where p(t) = 1+ .01t
and r(t) = (1 + .01t)2000, and we can solve for y(t) by the variation of
constants formula given in Theorem 2.1 to obtain

y(t) =

∫ t

1

e (1+.01t)−1
µ(t)

(t, σ(τ))
(1 + .01τ)2000

µ(τ)
∆τ.

Since T = qN0, µ(t) = (q − 1)t. Thus

y(t) =

∫ t

1

e .01t
(q−1)t

(t, σ(τ))
(1 + .01τ)2000

(q − 1)τ
∆τ

=
2000

q − 1

∫ t

1

1 + .01τ

τ
e .01

q−1
(t, σ(τ))∆τ.

But .01
q−1

is a constant and so e .01
q−1

(t, 1) =
∏ρ(t)

s=1[1+(q−1)( .01
q−1

)s] =
∏ρ(t)

s=1[1+

.01s] (see page 74 of [1]). Hence

y(t) =
2000

q − 1

∫ t

1

1 + .01τ

τ

∏

s∈[σ(τ),t)

[1 + .01s]∆τ.

Therefore

y(t) =
2000

q − 1

∫ t

1

1 + .01τ

τ

∏

s∈[σ(τ),t)

[1 + .01s]∆τ

=
2000

q − 1

∑

i∈[1,t)



µ(i)
1 + .01i

i

∏

s∈[σ(i),t)

[1 + .01s]





=
2000

q − 1

∑

i∈[1,t)



(q − 1)i
1 + .01i

i

∏

s∈[σ(i),t)

[1 + .01s]





= 2000
∑

i∈[1,t)



(1 + .01i)
∏

s∈[σ(i),t)

[1 + .01s]



 .

So the solution of the IVP for the IRA problem is

y(t) = 2000

ρ(t)
∑

i=1



(1 + .01i)

ρ(t)
∏

s=σ(i)

[1 + .01s]



 .

If q = 1.5 and n = 5 we calculate how much money is in our IRA after
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t = (1.5)5 ≈ 7.59, so approximately 6.59 years after our initial investment,
we get

y((1.5)5) = 2000
∑

i∈[1,(1.5)5)

(1 + .01i)
∏

i∈[σ(i),(1.5)5)

[1 + .01s]

which is approximately $11,025.71.

Example 3.8. We now consider an example for the Series Solution Theorem
2.3. On the time scale T = qZ = {0} ∪ {qn|n ∈ Z}, this series solution can
be useful where p(t) and r(t) in (2.1) are both monomials. On this time
scale, we note that

rσk

(t) = r(qkt)

and thus advancing a monomial term k times will multiply the term in the
original polynomial r(t) by q raised to k times the order of the term, i.e.

(αxβ)σk

= α(qkx)β = αxβqkβ.

We consider the case p(t) = αtβ and r(t) = Atc, where α, β, A, c ∈ R. Thus
we find the series solution to yσ − αtβy = Atc for t 6= 0 as follows:

y(t) =
∞∑

k=0

−rσk

(t)

p(t)pσ(t)pσ2(t)pσ3(t) . . . pσk(t)

=
∞∑

k=0

−Aqkctc

(αtβ)(αqβtβ)(αq2βtβ) . . . (αqkβtβ)

=
∞∑

k=0

−Aqkctc

αkq(1+2+...+k)βtkβ

=
∞∑

k=0

−Aqkctc

αkq
(k+1)k

2
βtkβ

= −Atc
∞∑

k=0

(

qc

αtβq
(k+1)

2
β

)k

.

Now, we note that this series converges by the ratio test for all t 6= 0 as

lim
k→∞

∣
∣
∣
∣
∣
∣
∣
∣
∣

(

qc

q
k+2
2 βαtβ

)k+1

(

qc

q
k+1
2 βαtβ

)k

∣
∣
∣
∣
∣
∣
∣
∣
∣

= lim
k→∞

∣
∣
∣
∣
∣

qc

αtβ
q

k2+k
2

β

q
k2+3k+2

2
β

∣
∣
∣
∣
∣
= lim

k→∞

∣
∣
∣
∣

qc

αtβ
q−(k+1)β

∣
∣
∣
∣
= 0.
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Thus for t 6= 0 we have as a solution

y(t) = −r(t)
∞∑

k=0

qkc

q
(k+1)k

2
β(αtβ)k

for any monomial r(t) on the time scale qZ, and for t = 0, we note that 0 is
a dense point in this time scale and thus yσ(0) = y(0), and yσ(t)−αtβy(t) =
r(t) becomes simply y(0) = r(0).

Example 3.9. For the time scale N
b = {nb|n ∈ N} where b ∈ R, b > 0, we

find that for p(t) a monomial, the corresponding solution to (2.1) is

eαtβ−1
µ

(t, t0) = αnt

(

Γ(t
1
b )

Γ(t
1
b

0 )

)bβ

which is a solution to uσ(t) = αtβu(t), u(t0) = 1 as the reader can easily
verify.

Given this solution to the homogeneous problem, we can now solve cor-
responding nonhomogeneous equations.

Example 3.10. Solve the nonhomogeneous problem

yσ − αtβy = (αtβ)αnt

(

Γ(t
1
b )

Γ(t
1
b

0 )

)bβ

.

Since from the previous problem we have found the exponential

eαtβ−1
µ

(t, t0) = αnt

(

Γ(t
1
b )

Γ(t
1
b

0 )

)bβ

we may use our variation of constants formula (2.4) to find

y(t) = αnt

(

Γ(t
1
b )

Γ(t
1
b

0 )

)bβ


y0 +

∫ t

t0

αsβeαtβ−1
µ

(s, t0)

µ(s)αsβeαtβ−1
µ

(s, t0)





= eαtβ−1
µ

(t, t0)

(

y0 +

∫ t

t0

∆s

µ(s)
∆s

)

= eαtβ−1
µ

(t, t0)(y0 + nt).

This motivates the following corollary to the variation of constants theorem:

Corollary 3.1. The solution to the IVP

yσ − p(t)y = f(t)eq(t, t0), y(t0) = y0



19

where q ∈ R, p(t) 6= 0, ∀t ∈ T
κ is given by

y(t) = e p−1
µ

(t, t0)

(

y0 +

∫ t

t0

f(s)eq 	 p−1
µ

(s, t0)

p(s)µ(s)
∆s

)

.

Proof. By Theorem 2.1, we have the solution of the given IVP is

y(t) = e p−1
µ

(t, t0)

(

y0 +

∫ t

t0

f(s)eq(s, t0)

µ(s)p(s)e p−1
µ

(s, t0)
∆s

)

,

and since

eq(t, t0)

e p−1
µ

(t, t0)
= eq(t, t0)e	 p−1

µ
(t, t0) = eq⊕(	 p−1

µ
)(t, t0) = eq	 p−1

µ
(t, t0)

we have our desired result. �

4. Enumerations

By an enumeration on an isolated time scale, consider the mapping nt(·, t0) :
T → Z given by the counting function, and name each point of the time
scale with an index of the value of the counting function at that point.
Thus, our anchor point t0 stays the same, σ(t) becomes t1, σ2(t) becomes
t2, and so on, again with the convention that negative exponents indicate
use of the backward jump operator ρ rather than the forward jump operator
σ.

For the problem yσ = (nt + c)y, c ∈ R, enumerate the time scale and
consider the function values as the elements in a sequence, where tk = σk(t)
and yk = y(tk). The solution to this recurrence relation is then

yj =

{
Γ(j+c)
Γ(c)

y0, j ≥ 0
(−1)jΓ(1−c)
Γ(1−c−j)

y0, j < 0
.

For c = 0 on Z, the solution breaks at t = 0, but considering the solution
on the point t ≤ 0 we have an alternating sequence of the reciprocals of
factorials, and for t ≥ 0 we have the factorials.

We now consider a generalization of our main problem, namely

yσk − p(t)y = r(t).

Viewing this as a recurrence relation, we notice that only every kth point is
connected from any given initial value; for k = 2, this formula would only
relate points of even index to points of even index, and points of odd index
to points of odd index: the solutions on these two sets of points will be
independent of each other.
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Theorem 4.1. Recurrence Solution on Partitioned Time Scale

Consider the recurrence relation

(4.1) p1(t)y
σa1

+ p2(t)y
σa2

+ . . . + pn(t)yσan
+ q(t)y = r(t), q(t) 6= 0

and let g = gcd{ai}, k = max{ai}. Partition the time scale T into the time

scales Tn := {t|nt(t, t0) ≡ n(mod g)} for 0 ≤ n < g. Then solving this

recurrence relation is equivalent to solving an IVP of order k
g

on each of the

time scales Tn where the function µ is replaced by µ̃ := µ+µσ +µσ2
+ . . . +

µσg−1
.

Proof. First, we note that the function values yp, yq are related by this re-
currence relation iff

σr1(tp) = σr2(tq)

for some r1, r2 which are linear combinations of the ai. To see this, we note
that by looking at (4.1) with t = tp that yp must obey a relationship with
all points yp+ai

, and then repeatedly applying (4.1) yields that yp is related
to values yp+c1a1+c2a2+...+cnan

, where the ci’s are integer constants, including
negative integers from looking back along the time scale. Now, if there is
some point tq such that

yq+d1a1+d2a2+...+dnan
= yp+c1a1+c2a2+...+cnan

then these values are related through (4.1). Since the smallest positive value
of a linear combination of the ai’s is g then related function values can be
no less than g jumps apart, and since there exists some linear combination
of the ai with sum g then points g jumps apart are related by our formula.
Thus, we must have g sets of function values for y which are not related to
one another by the equation, and these independent sets of solution points
are the values on the time scales Tn. Now, since one use of the jump operator
on Tn is equivalent to g uses of the jump operator on T, the order of the
recurrence relation (4.1) is reduced by a factor of g on all time scales Tn.
The converse is obvious. �

Thus we find that the solution to yσk − p(t)y = r(t), p 6= 0 is

y([T]) =
⋃

n∈{0,1,2,...,g−1}
y([Tn])

where

y|Tn
= e p−1

µ̃
(t, tn)

(

yn +

∫ t

tn

r(s)

µ̃(s)p(s)e p−1
µ̃

(s, tn)
∆s

)

.

Example 4.1. Solve the sixth order recurrence relation

(4.2) yσ6 − yσ3 − y = 0
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on the time scale qN0 with t0 = 1 and initial conditions

y(1) = 1, y(q) = −5, y(q2) = 8 × 10102

,

y(q3) = 1, y(q4) = −9, y(q5) = 13 × 10102

.

Noting that gcd{3, 6} = 3, we first partition qN0 into three time scales
using the counting function nt(t, t0) = logq(t/t0) = logq(t), forming the cells

T0 = q3N0 , T1 = q3N0+1, and T2 = q3N0+2. On each of these time scales we
consider the recurrence relation yσ2 − yσ − y = 0, which we recognize as the
relation generating the Fibonacci sequence. Thus, on T0 with initial values
1 and 1, we have the classic Fibonacci sequence, on T1 the initial conditions
−5 and −9 will give a Fibonacci type sequence with all terms negative, and
on T2, our initial conditions y(q2) = 8 × 10102

, y(q5) = 13 × 10102
will give

Fibonacci sequence values multiplied by one googol.

5. Recurrence Relations and the Counting Function

Note that for f(t) 6= 0 for all t ∈ T that for

(5.1) uσ =
fσ

f
u

a general solution to (5.1) is u(t) = cf(t). Now, in particular, if in (5.1) we
consider f(nt) rather than f(t) then we can view the problem as a simple
relation between functions of consecutive integers or terms in a sequence, as
fσ(nt) = f(nt + 1). Now, we may therefore approach problems of the form
yσ = p(t)y + r(t) by converting p(t) into a rational function of the form
f(nt+1)

f(nt)
. We note that any isolated time scale can be enumerated by use of

the counting function

nt(t, t0) =

∫ t

t0

∆s

µ(s)
.

Using this approach, we find that many of our examples can be solved an
easier way:

uσ = qu =
qnt+1

qnt
u =⇒ u = cqnt

with qnt = t
t0

on qZ, t, t0 6= 0, as Example 3.1,

uσ =
µ(t)

µσ(t)
u =⇒ u =

c

µ

with 1
µ(t)

= n + 1 on {Hn}∞0 , as in Example 3.2,

uσ =
2 + nt

1 + nt

u =⇒ u = c(nt + 1)
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and in particular, on N
2 where nt(t, 1) =

√
t − 1

uσ =
1 +

√
t√

t
u =⇒ u = c

√
t

as in Example 3.5, and on N
1
2 , with nt(t, 1) = t2 − 1 we see that

uσ =
2t2 + 1

2t2 − 1
u =

(2nt(t, 1) + 1)σ

2nt(t, 1) + 1
u =⇒ u = c(2nt(t, 1) + 1)

as in Example 3.6. This seems to suggest that it may be of value to consider
recurrence relations on time scales as sequences. The closure of the image
of the interior of any isolated interval of a time scale under a map which is
increasing and injective will again be a time scale, as the image of the open
interval between points will be an open interval between points in the image.
Thus any portion of a sequence can be transformed to be on any isolated
interval of a time scale, so long as the cardinalities match. The counting
function always provides a map back to the integers, which seems to suggest
that understanding the transformations between time scales depends on
studying the lengths of the images of intervals.
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