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Abstract: Is the classical predator-prey theory inherently pathological? Defend-
ers of the theory are losing grounds in the debate. We will demonstrate that the
detractors’ argument is based on a faulty model, and the conceptual and predic-
tive bases of the theory are fundamentally sound.

Biological control is to introduce natural predators or parasites to ecosystems for
pest control. It works when the pest populations are either eradicated or kept at a
stable and low density equilibrium or low density cycle. There are numerous exam-
ples of successful biological control. A paradox was raised in [16] when a classical
predator-prey model was used to solve the biological control problem. The model as-
sumes the logistic growth for the prey(the pest), the Holling Type II predation by the
predator(the control agent), and aconstantper-capital death rate of the predator. Such
a model cannot have a stable and arbitrarily low prey density equilibrium ([18]). At-
tempts have been made to find alternative models that can exhibit controlled stable
and low density states ([4, 6]). One proposal is to replace the prey-dependent Holling
Type II predation form ([12]) by the ratio-dependent functional form ([4]). It has been
controversial ever since largely because the ratio-dependent form lacks a mechanis-
tic derivation ([5, 1, 3]). Nevertheless it is steadily gaining acceptance in the field of
population ecology ([4, 2, 14, 8, 13]). The key justification by its proponents lies in a
perceived predictive attribute that the ratio-dependent model solves the biological con-
trol paradox by being able tophenomenologicallyproduce arbitrarily small and stable
equilibrium for both predator and prey ([4]). Hence, ‘in a biological sense, it is the
prey-dependent model that shows pathological behavior’ ([2]). Without its predictive
power, the usefulness and consequently the validity of the classical theory are seriously
diminished. Traditionalists are losing ground in the debate and the predator-prey re-
search is seemingly back to the days prior to Holling’s 1959 seminal work on predation.

We argue that the suggestion that the classical theory is in a fundamental crisis is
unfounded for a reason that its detractors’ argument is based on a faulty model. The
root of problem lies in the overly simplistic assumption that the predator dies at a
constant per-capita rate. In theory it is inconsistent with Verhulst’s logistic modelling
principle ([20, 15, 21]) that species per-capita death rate should be density dependent.
In consequence it produces a vertical per-capita nullcline for the predator. It in turn
leads to an absurdity that if one can fix, at least conceptually, the prey density at a level
greater than the nullcline, the predator population would grow exponentially to infinity.
The fundamental contribution of Lotka, Volterra, and Verhulst from the first quarter of
last century taught us that one should always take into account the effect of interspe-
cific interference at high density levels unless such a consideration is negligible. This
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complete version of the classical theory was used by Rosensweig ([17], pp.564–565)
to settle yet another well-known ‘paradox’ — the paradox of enrichment ([11, 18]). He
called such predators ‘squabbling’. The logistic predator model can exhibit enrichment
paradox as he originally raised in [18], not as a case against the classical theory, rather
as a case for caution out of a biologically counterintuitive yet mathematical valid prin-
ciple, though not biologically as universal as the first impression his original work was
likely to leave. More specifically, for a large squabbling coefficient, the enrichment
paradox phenomenon does not occur, thus accommodating the class of ecosystems for
which enrichment does not lead to destabilizing cycles. This latter part of his work
from [17] is commonly overlooked, especially when the enrichment paradox is cited in
the literature as another pathology of the classical theory, in addition to the biological
control paradox.

The difference between the exponential predator-prey model, which the proponents
of ratio-dependent predation use to question the mechanistic theory, and the logistic
predator-prey model, which they overlooked, cannot be greater([7]). For the former,
there can be no more than 1 nontrivial equilibrium which cannot be small for both
predator and prey and stable at the same time. For the latter, there can be 1, 2, and
3 nontrivial equilibrium points, with the 2-equilibrium state being a bifurcation state
between the 1-equilibrium and 3-equilibrium states. If there is only one equilibrium
point, it can be stable independent of where it is. If there are 3, then the right most and
the left most equilibrium points can be stable, one sits on each side of the prey nullcline
hump. All that the stability requires is to have a sufficiently large reproductive ratio of
the predator over the prey (the predator-to-prey prolific ratio). Furthermore a small
cycle can be born from the left most equilibrium point if the point is to the left of
the prey nullcline hump and the ratio decreases and crosses a Hopf bifurcation point.
The amplitude of the limit cycle increases with decrease in the ratio, giving way to
the destabilizing regime of ‘enrichment paradox’. See Box 1 and Fig.1(a). These
predictions are perfectly consistent with what is expected for an effective biological
control. In addition, when the left most equilibrium is near the origin, the prey density
is in the order ofd/[c(b−hd)], and the predator density is in the order ofr/c, wherer is
the intrinsic prey growth rate,b is predator’s birth-to-consumption ratio,c is predator’s
rate of discovery,d is predator’s intrinsic death rate,h is predator’s handling time, all
measured in per capita rate. As an example, a high predator discovery rate,c, can result
in low equilibrium density for both species. Other combinations of the parameters can
result in the same phenomenon of low density and stable states. Those are self-evident
from the formula.

The exponential predator-prey model is a poor choice for biology and for control. It
is a reasonable model only if the prey out-reproduces the predator, presumably the case
for many natural systems. It is not an appropriate model if the predator must dominate
the prey as in pest control situations we typically envision. The logistic predator-prey
model on the other hand is the basis for both. With respect to control in practice, man-
agement strategies can be modelled and incorporated into the modelmechanistically.
One can supply a system with a constant influx of predator, or artificially sustain a
high level of predator density by supplying it with an alternative food source. In the
latter case, assuming the predator consumes the pest prey and the alternative prey or
nutrient indiscriminately, then it can be shown that for high enough densities of the
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alternative prey the per-capita nullclines of the pest prey and the controlling predator
do not intersect. Instead, a globally attracting, nonvanishing, predator-only equilibrium
appears that is supported by the alternative prey with the pest prey extinct. See Box
2 and Fig.1(b). In a true control sense the predator can be eliminated, if desired, by
withdrawing the alternative prey once the pest prey is eradicated.

In conclusion, the classical theory is not intrinsically pathological. Its conceptual
and predictive bases remain fundamentally sound. Justification for replacing Holling’s
Type II predation form in predator-prey modelling byad hocand phenomenological
forms cannot be made on the ground that it leads to paradoxes.
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Box 1 Text
The Logistic Predator-Prey Model The classical predator-prey model based on the
logistic growth principle and Holling’s predation theory is as follows.

Ẋ = X[r(1− X
K )− pY

H+X ]
Ẏ = Y [ bpX

H+X − (d + sY )]
(1)

wherer is prey’s intrinsic growth rate,K is prey’s carrying capacity,p is predator’s per-
capita saturation capture rate,H is the semi-saturation density,b is predator’s birth-to-
consumption ratio,d is predator’s intrinsic death rate,s is predator’s interspecific death
rate coefficient, the ‘squabbling’ coefficient. Alsop = 1/h,H = 1/(ch) with h being
predator’s per-prey handling time andc predator’s per-capita prey-discovery rate.

Using the following rescaling ([10]) for the variables

x = X/K, y = Y/(rK/p), t := bpt

and parameters

ε = bp/r, β = H/K, δ = d/bp, σ = rKs/p

we get the following dimensionless form

εẋ = x[1− x− y
β+x ]

ẏ = y[ x
β+x − (δ + σy)] (2)

For σ > 0, predator’s per-capita nullcline has the same predation disc form:y =
[x/(β + x) − δ]/σ, Fig.1(a). It is monotonically increasing inx with saturation
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(1 − δ)/σ. It represents the prey-supported carrying capacity for the predator. One
of the important features of this form is that it can segregate the system into different
time scales. Specifically, if the predator-to-prey prolific ratioε is sufficiently large,
then the temporal change inx is negligible ify is not near its capacity nullcline state
and becomes significant if and only ify is so. Therefore solutions will first quickly
converge to they-capacity nullcline and then slowly develop along the capacity curve
to the nontrivial equilibrium, wherever it locates. If on the other handε is small, the
time scales for the species are reversed:x changes faster thany does. In such a case
solutions congregate near thex-nullclines. It matters little whether or not the per-capita
y-nullcline is vertical or monotonically increasing inx. Consequently, the exponential
model works as well as the logistic model.

The same results apply to models based on various Holling Type II expanded func-
tional forms ([9, 19]) for which predator’s interspecific interference is considered in
the context of spacial interference of predation. All these forms will generate a non-
vertical prey-supported capacity nullcline for the predator whether or not the death rate
coefficient,s, of the predator is zero. Consequently, the nontrivial equilibrium point
near the origin is always generically stable for sufficiently large predator-to-prey pro-
lific parameterε.

On the magnitude of thexy-equilibrium point for the logistic predator-prey model
above, we see that when the equilibrium is near the origin it is near both axes. Specif-
ically, thex-intercept of they-nullcine isx∗ = βδ/(1 − δ), and they-intercept of the
x-nullcline isy∗ = β. In the dimensional form, the corresponding equilibrium point
(X̄, Ȳ ) is approximatelyX̄ ≈ Kx∗ = d/[c(b − hd)] andȲ ≈ rKy∗/p = r/c. This
approximation is better if the squabbling coefficients is small since they-nullcline will
become more vertical.

Box 2 Text
Biological Control with Alternative Prey Let Z be the alternative prey of predatorY ,
and assumeY feeds onX, Z indiscriminately. Then Holling’s disc functions for the
per-predator capture rates arecX/(1 + chX + czhzZ) on X andczZ/(1 + chX +
czhzZ) on Z, with cz, hz being predator’s discovery rate and handling time onZ
respectively. The per-capita birth rate isbcX/(1 + chX + czhzZ) + bzczZ/(1 +
chX + czhzZ) with bz being predator’s birth-to-consumption ratio onZ. AssumingZ
is maintained at a constant level, then with proper regroup of parameters Eq.(1) takes
the following form

Ẋ = X[r(1− X
K )− pY

H+X ]
Ẏ = Y [A+bpX

H+X − (d + sY )]
(3)

It is the same form as Eq.(1) except that the composition ofH is expanded accordingly
and that the inclusion ofA is due to the constant supply from preyZ. TheY -intercept
of the per-capitaY -nullcline isȲ = (A/H−d)/s. ForA/H−d > 0, aY -equilibrium
point (0, Ȳ ) is born. ForȲ = (A/H − d)/s > r/c, the Y -intercept of the per-
capita prey nullcline, the(0, Ȳ ) equilibrium is always stable. Under the same condition
and for small enoughs, the per-capita nullclines for both prey and predator do not
intersect, thus all solutions converge to(0, Ȳ ), eliminating the prey. Also, using the
same scalings as for Eq.(2), the equations are cast in the same form except for the
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y-equation:
ẏ = y[α+x

β+x − (δ + σy)] (4)

with α = A/(bpK).

Figure and Caption
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Figure 1: (a) Parameter values for Eq.2ε = 100, β = 0.05, δ = 0.2, σ = 0.2. The
solution starts near the scaled prey capacity(1, 0). (b) Same as (a) except thatα = 0.3
in Eq.4.

Supplement on Stability(for review only)
The stability of the equilibrium point can be established alternatively. Letf andg

be the right hand of thex-equation andy-equation respective in Eq.(2) and let

εu̇ = f1u + f2v
v̇ = g1u + g2v

(5)

wheref1 = ∂f/∂x evaluated at an/thexy-equilibrium point and so on. The corre-
spondingu-nullcinef1u + f2v = 0 is the tangent line to the humpedx-nullcline at the
equilibrium point. Thus we always havef2 < 0, andf1 > 0 if the equilibrium point
is left of the hump andf1 < 0 if it is right of the hump. Similarly,g1 > 0, g2 < 0
no matter where the equilibrium is. These conditions imply that the equilibrium point
right of the hump isalwaysstable. For the equilibrium point left of the hump and clos-
est to the origin, the slope of thev-nullcline is greater than the slope of theu-nullcline:
−g1/g2 > −f1/f2. Using this property it is straightforward to show that for suffi-
ciently largeε the eigenvalues of Eq.(5) always have a negative real part. Moreover,
by decreasingε the eigenvalues will cross the imaginary axis so that the stable equilib-
rium point will give way to a stable limit cycle via Hopf bifurcation. This result is not
model-specific. It applies to systems with qualitatively similar per-capita nullclines of
prey and predator.
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