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We begin with a population of individuals whose reproductive fitnesses par-

tially depend on the results of a game that each individual plays repeatedly

against every other individual. Suppose this population consists of two types of

strategists, a portion of the population always choosing to play strategy A and

the rest of the population always choosing to play strategy B. In any given gen-

eration, the fitness of each player is then determined by which strategy they are

playing, how that strategy fares against itself and against the other strategy, and

how many A and B strategists there are in the population at the given time. For

example, if A is a strategy that does quite well against itself but poorly against

strategy B, then an A strategist in a population of predominantly B strategists

would do poorly, whereas an A strategist in a population of predominantly A

strategists would do well. We define the payoff matrix for the game as follows:




A B

A a b

B c d




Here, a is the payoff for an A strategist against another A strategist, b is

the payoff for an A strategist against a B, c is the payoff for a B against an A,

and d is the payoff for a B against a B. These payoffs may not be constants,

as they may be dependent upon the number of rounds of the game played or
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on the probability of playing another round. As an alternative to assuming a

fixed, constant number of rounds between each pair of players, we assume a

constant probability 0 < n < 1 of playing another round. The first round is

always assumed to occur. Thus, the probability of playing round t is nt−1. We

can then calculate total payoffs as geometric sequences. For example, if a player

is receiving a payoff of R in every round against an opponent, the player’s total

payoff is:
∞∑

t=0

Rnt =
R

1− n

In order to define the fitness of an A or B strategist in a population of N total

players with i players of strategy A, we introduce a parameter 0 < w < 1 which

controls the fraction of reproductive fitness which depends on the game. We

assume that in matters unrelated to the game, A and B strategists are exactly

alike, and thus have some fitness due to other factors which is constant, and we

normalize this amount to be 1. We then define the total fitness as a weighted

average of this constant fitness and the fitness due to the game, giving weight

w to the game. If we define f to be the fitness of an A strategist in the given

population and g to be the fitness of a B strategist, then f and g are the following

functions of N,i,w, and n:

f(N, i, w, n) = 1− w + w
a(n)(i− 1) + b(n)(N − i)

N − 1

g(N, i, w, n) = 1− w + w
c(n)i + d(n)(N − i− 1)

N − 1

We note that players do not play against themselves, hence they have N − 1

opponents. Now, we will model the evolution of such a finite population using
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phases of reproduction and death in each generation. In their article, Emer-

gence of cooperation and evolutionary stability in finite populations,

Nowak, Sasaki, Taylor, and Fudenberg define and analyze such a model for the

case of a population at carrying capacity. We will extend their model slightly

to allow for population growth up to the upper bound of carrying capacity. Our

reproductive phase we will define to coincide with theirs precisely: in each gen-

eration, which will be a time step, a single individual is chosen to reproduce

an identical offspring which will be added to the population for the next time

step. The probability of choosing any particular individual to reproduce is pro-

portional to the fitness of that individual, and thus the probability that an A

offspring will result is the number of A strategists multiplied by the fitness of

an A strategist, divided by the total fitness of the population. The probability

of acquiring a B offspring is similarly defined.

The death phase of our model we define differently. In Nowak, Sasaki, Tay-

lor, and Fundenberg’s model, an individual is randomly chosen for death and

promptly is eliminated from the population. Therefore, the total population

is always constant. In our model, an individual is also randomly chosen (so

the probability of choosing an A individual is i/N for a population of N with

i individuals playing A) but that individual is only eliminated with probability

N/C, where C is the carrying capacity. Thus the individual survives into the

next generation with probability 1 − N/C. This probability is not dependent

on fitness, and ensures that the population will always reach carrying capacity

eventually, but will never exceed it. Once the population reaches carrying ca-
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pacity, our model becomes exactly like the other model. As noted in the article,

this process has only two possible end states if carried on long enough: either a

homogeneous population of A strategists at carrying capacity or a homogeneous

population of B strategists at carrying capacity will result.

The state of the population at any point can be completely described by

two parameters, N and i. After one time step, one reproduction and possible

death, there are five possible outcomes for a population initially in state (N,i):

(N+1,i),(N+1,i+1),(N,i+1),(N,i-1),(N,i). Since 0 ≤ i ≤ N , it is possible to visu-

alize all of the possible states as a triangle, with the row number corresponding

to N and the entry across the row corresponding to i. This allows us to describe

each state by a single parameter j, starting at the top and counting off j’s across

the row and then jumping to the next row. Thus,

j − t− 1 = i

N(N + 1)
2

= t

for t the largest triangular number less than j. Using this order convention, we

can create a transition matrix, a square matrix, (C + 1)(C + 2)/2 on a side,

with the Pj,j′ entry containing the probability of moving from state j to state

j′. Each row of this matrix will contain five non-zero entries, one for each of

the five possible outcomes of a time step. We define Yj to be the probability of

strategy A taking over the population (i=C) starting at state j. We have:

Yj = Pj,j−1Yj−1 + Pj,jYj + Pj,j+1Yj+1 + Pj,j+N+1Yj+N+1 + Pj,j+N+2Yj+N+2

with boundary conditions Yj = 0 for all j corresponding to a state (N,0) for
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N ≥ 0 (the right edge of the triangle) and Yj = 1 for all j corresponding to a

state (N,N) N ≥ 1 (the left edge of the triangle). This set of equations can be

represented by a matrix equation PY = Y with the added boundary conditions

and solved for Y . We further claim that the solution is unique.

Proof of Unique Solution. First, we define our transition probabilities as

follows:

x1(N, i) = Pj,j+1 =
if [N, i]

if [N, i] + (N − i) g[N, i]
(N − i)

C

x2(N, i) = Pj,j−1 =
(N − i) g[N, i]

if [N, i] + (N − i) g[N, i]
i

C

x3(N, i) = Pj,j+N+1 =
(N − i) g[N, i]

if [N, i] + (N − i) g[N, i]

(
1− N

C

)

x4(N, i) = Pj,j+N+2 =
if [N, i]

if [N, i] + (N − i) g[N, i]

(
1− N

C

)

We stipulate that payoffs are non-negative, so fitness is always positive. Consider

the triangle of all values of Y(N,i). On the interior of this triangle, 0 < xl(N, i) <

1 for l = 1, 2, 3, 4. The proof will be inductive; we know a unique solution exists

for the row N=C (Fudenberg, Nowak, Sasaki, and Taylor), so we solve one row at

a time, assuming we already know the solutions on the subsequent row. We also

assume the solutions Y(N,i) of this row are non-negative, since there is always

some chance that a single A strategist will ultimately defeat all opponents. Now,

let Y(N,i) denote the solution at state (N,i). We know

Y (N, i) = (1− x1 − x2 − x3 − x4)Y (N, i) + x1(N, i)Y (N, i + 1)

+x2(N, i)Y (N, i− 1) + x3(N, i)Y (N + 1, i) + x4(N, i)Y (N + 1, i + 1)

Solve this for Y(N,i+1):

Y (N, i + 1) =
∑4

l=1 xl(N, i)
x1(N, i)

Y (N, i)− x2(N, i)
x1(N, i)

Y (N, i− 1)− x3(N, i)
x1(N, i)

Y (N + 1, i)
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−x4(N, i)
x1(N, i)

Y (N + 1, i + 1) (1)

We are solving for row N, and we stipulate that Y (N, 0) = 0. We can then

express all other solutions along the row in terms of Y(N,1), assuming Y(N+1,j)

for all j to be non-negative constants. We further assume all interior solutions

are positive, so the only positive term above,
∑4

l=1
xl(N,i)

x1(N,i) Y (N, i) must be strictly

greater in magnitude than the negative terms. We will ignore the x3 and x4

terms since they are just negative constants from this perspective. We will trace

the coefficient of Y(N,1) in the expression of each Y(N,j): for example, since

Y (N, 0) = 0, we see that

y(N, 2) =
∑4

l=1 xl(N, 1)
x1(N, 1)

y(N, 1)− constants

and

Y (N, 3) =
∑4

l=1 xl(N, 2)
x1(N, 2)

(∑4
l=1 xl(N, 1)
x1(N, 1)

Y (N, 1)− x3(N, 1)
x1(N, 1)

Y (N + 1, 1)−

−x4(N, 1)
x1(N, 1)

Y (N + 1, 2)
)
− x2(N, 2)

x1(N, 2)
Y (N, 1)−

−x3(N, 2)
x1(N, 2)

Y (N + 1, 2)− x4(N, 2)
x1(N, 2)

Y (N + 1, 3)

So the coefficient of Y(N,1) is:
(∑4

l=1 xl(N, 2)
)(∑4

l=1 xl(N, 1)
)

x1(N, 2)x1(N, 1)
− x1(N, 1)x2(N, 2)

x1(N, 2)x1(N, 1)

Notice this is strictly positive because all xl are strictly between 0 and 1. In

general, we note
∑4

l=1 xl(N, i)
x1(N, i)

>
x2(N, i)
x1(N, i)

whenever (N,i) is in the interior of the triangle. Reconsidering the recursive
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equation (without the terms depending on the next row):

Y (N, i + 1) =
∑4

l=1 xl(N, i)
x1(N, i)

Y (N, i)− x2(N, i)
x1(N, i)

Y (N, i− 1)

we claim the coefficient of the parameter Y(N,1) is always strictly positive. Since

the coefficient of the parameter in the negative term, −x2(N,i)
x1(N,i)Y (N, i − 1), can

be put over the common denominator x1(N, i)...x1(N, 2)x1(N, 1) and compared

to the coefficient of the parameter in the positive term,
∑4

l=1
xl(N,i)

x1(N,i) Y (N, i),

we see that
∑4

l=1
xl(N,i)

x1(N,i) ...

∑4

l=1
xl(N,1)

x1(N,1) contains all negative terms, and so the

coefficient is ultimately strictly positive. To illustrate this further, we consider

the expression for Y(N,4) in terms of Y(N,1), and note that the coefficient of

Y(N,1) is:
(∑4

l=1 xl(N, 3)
x1(N, 3)

)(∑4
l=1 xl(N, 2)
x1(N, 2)

)(∑4
l=1 xl(N, 1)
x1(N, 1)

)

−
(∑4

l=1 xl(N, 3)
x1(N, 3)

)
x2(N, 2)
x1(N, 2)

−
(∑4

l=1 xl(N, 1)
x1(N, 1)

)
x2(N, 3)
x1(N, 3)

We could easily put this expression over a common denominator, expand terms,

and then subtract, noting that our subtracted terms merely cancel some, but

never all of our positive terms. If we continued to consider the coefficient of

Y(N,1) in the expression for Y(N,6), or Y(N,7), or so on, we would find the

similar situation of subtracting some, but not all of the positive terms over a

common denominator, leaving us with a strictly positive coefficient. It is essen-

tial to note that we never subtract the same term twice, since to get a common

denominator we multiply by x1 expressions, whereas the numerator in the neg-

ative recursive term is an x2 expression. Thus, when we solve the equation

Y(N,N) = 1, we uniquely determine our parameter Y(N,1), hence demonstrat-
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ing a unique solution to our system with the proper boundary conditions.

This proof is valuable in that it simultaneously illustrates a process for ac-

tually calculating our solutions, though there is a much simpler proof of the

fact that our solution in unique. We note that our recursive equation has the

property that if two solutions exist, say Z(N,i) and V(N,i), their difference,

Z(N,i)-V(N,i) also satisfies the recursive equation. Thus, if Z(N,i) and V(N,i)

are identical on the boundary, their difference is zero on the boundary. Now,

if we assume their difference is non-zero at some point on the interior of the

triangle, it must achieve a maximum on the interior. Since the value at any

given point is determined as a weighted average of the values of its adjacent

points, this maximum must be achieved not only at the point itself, but also at

its neighbors. Hence, the function must in fact be constant, and hence Z(N,i)-

V(N,i) is identically zero for every point on the triangle, hence the solution is

unique.

Proof of Drift Case

From equation (1), we can compute:

y(N, i) =

(
1 +

g(N, i− 1)
f(N, i− 1)

+
N

(
1− N

C

)

(i− 1) N
C

g(N, i− 1)
f(N, i− 1)

+
N

(
1− N

C

)

(N − i + 1) N
C

)
y(N, i− 1)

− g(N, i− 1)
f(N, i− 1)

y(N, i− 2)− N
(
1− N

C

)

(i− 1) N
C

y(N + 1, i− 1)− N
(
1− N

C

)

(N − i + 1) N
C

y(N + 1, i)

For the drift case, the weight on the game (w) is zero. We define drift as

a mutation which has no effect on the payoffs received from the game, and

therefore has no effect on fitness. In this case:

f(N, i)
g(N, i)

= 1
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So

y(N, i) =

(
1 + 1 +

N
(
1− N

C

)

(i− 1) N
C

+
N

(
1− N

C

)

(N − i + 1) N
C

)
y(N, i− 1)− y(N, i− 2)

−N
(
1− N

C

)

(i− 1) N
C

y(N + 1, i− 1)− N
(
1− N

C

)

(N − i + 1) N
C

y(N + 1, i) (2)

When y(N, i) = i
N , the right hand side of equation (2) is:

(
1 + 1 +

N
(
1− N

C

)

(i− 1) N
C

+
N

(
1− N

C

)

(N − i + 1) N
C

)
i− 1
N

− i− 2
N

−N
(
1− N

C

)

(i− 1) N
C

i− 1
N + 1

− N
(
1− N

C

)

(N − i + 1) N
C

i

N + 1

which simplifies to i
N , satisfying the system. To calculate the solutions for

non-neutral mutations, we can follow the parametrization procedure outlined

earlier, solving along each row in terms of the parameter Y(N,1), solving for

that parameter using Y(N,N)=1, and also requiring that Y(N,0)=0. Thus, for

any carrying capacity, we can graph the solutions Y(N,1) for N ranging from 1

to carrying capacity, limited only by computing resources of processing time and

memory. In the following graphs, we specify values of C (carrying capacity),

n (probability of playing another round of the game), and w (weight of the

game) and graph our solutions Y(N,1) in green, representing the probability

that a single mutant playing strategy A will invade a total population of N

players, the others playing strategy B, for the fixed values of w, n, and C.

For comparison, we also plot red and blue lines, the red line representing the

probability that a neutral mutation arising in the population would invade, and

the blue line representing the same mutation as the green line, arising in the

same population, but instead of assuming a carrying capacity of C we assume

that N, the total population at the state, is in fact the carrying capacity. The
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x-axis represents values of N, and the y-axis the solutions Y(N,1). In other

words, the value of the green line at the point N=5 represents the probability

that a single A player arising in a total population of 5 will eventually invade,

assuming a carrying capacity of C, while the value of the blue line at N=5

represents the probability that a single A mutant arising in a population of 5

will invade, assuming carrying capacity to be 5. All lines are calculated for the

same values of n and w, though of course these values have no effect on the red

line.

We considered the game of Prisoner’s Dilemma, a standard model for bio-

logical simulations. In this game, a player faces off in a series of rounds against

one opponent. A round consists of each player choosing to cooperate with his

partner or to defect (not cooperate). Payoff values are represented by T, R, S,

and P, generally with T > R > P > S and 2R > S + T . T is the payoff for

defecting when your partner cooperates, R is the payoff for cooperating when

your partner cooperates, P is the payoff for defecting when your partner defects,

and S is the payoff for cooperating when your partner defects. Your payoffs for

one round can easily be represented in the following matrix, with your moves

on the left and your partner’s on the top.




C D

C R S

D T P




Common values for (T, R, P, S) are (5, 3, 1, 0). We have used these values for

most of our calculations, though we will later compare our results to the case
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of R=4, all other values remaining the same. In a single round game or a finite,

known number of rounds, Always Defect (AllD) is the obvious best strategy

because no matter your opponent’s move, a defect move will always pay more

than a cooperate. This is called domination and can easily be seen in the above

matrix: each value in the second row is higher than the corresponding value in

the first row. This result is rather uninteresting, and gives little insight into the

occurrence and evolution of cooperation. However, when the number of rounds

is not finite or is finite but not known to the players, the game becomes more

interesting. Because total payoff is more important than relative payoff (scoring

highly is more important than winning), strategies other than AllD can arise.

There is the possibility that cooperating strategies can be successful since they,

while playing each other, will score highly. For our model we pitted Tit For Tat

(TFT), a much studied cooperator strategy, vs. AllD. TFT’s strategy is to copy

the previous move of his opponent, and his first move is always to cooperate.

In the following graphs, the green line represents the probability that a single

TFT player will invade a population of ALLD players with a carrying capacity

of C as described above, and the blue line represents a single TFT player in

the same population, but with carrying capacity N. The red line remains the

drift case. The following graphs both have C=100, n=.75, and R=3, the only

difference being that w=.2 and w=.1 respectively:
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One can see from these that lower values of the selection pressure, w, will

benefit the TFT strategy in the growth model. Lower w also seems to benefit

TFT in the non-growth model, since the blue line is also higher in the second

graph. What is perhaps most interesting about these graphs, however, is that

they illustrate that it is possible for the red line to sometimes come between

the green and blue lines, meaning that adding growth to the model can actually

change when a mutation is evolutionarily favored, that is, if we use the intuitive
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definition of favored as simply more likely to take over the population than a

neutral mutation. This effect is even more noticeable at small carrying capac-

ities, such as C=30. The following graph has parameters C=30, w=.1, n=.75,

R=3:

5 10 15 20 25 30

0.1

0.2

0.3

Here the growth case is clearly above drift throughout, while the non-growth

case crosses drift between N=10 and N=15. We compare to the case C=30,

w=.1, n=.6, R=3:

5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

The above graph illustrates that population growth can hurt the chances of
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a TFT take-over when the probability of playing another game is not sufficiently

high. This is not surprising, since lower values of n can result in domination.

As long as n < 1, the TFT payoff vs. AllD is strictly less than the AllD payoff

vs. itself, which is strictly less than the AllD payoff vs. TFT. Therefore, in

order to avoid ALLD being the obviously better strategy, we must have the

TFT payoff against itself be strictly greater than the AllD payoff vs. TFT. This

requires R/(1− n) > T + Pn/(1− n), which implies (T −R)/(T − P ) < n. So

for our values of T=5,P=1, and R=3, this becomes n > 1/2. We now consider

the larger carrying capacity of C=125 to see how changes in the value of R

might effect our results. Both graphs have n=.75, w=.2, and C=125. The only

difference is the first graph has R=3, and the second graph has R=4:

20 40 60 80 100 120

0.02

0.04

0.06

0.08

0.1
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Comparing these graphs, we find that increasing the value of R in comparison

to the other payoffs (though still maintaining T > R > P > S) allows TFT in a

growing population to remain evolutionarily favored for a larger range of values

of N. We now compare to graphs with all parameters being equal except carrying

capacity. For the first graph, C=75, R=3, n=.75, and w=.2. The second graph,

which we have already seen but include for convenience of comparison, has

C=100:

10 20 30 40 50 60 70

0.025
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We notice that in the first graph, the growth case crosses below drift roughly

at N=40, whereas in the second graph, this occurs closer to N=30. Thus,

increasing C seems to make the green line steeper, causing the range of values

of N for which growth benefits TFT to shrink. We conclude from all these

comparisons that growth is most helpful to TFT’s attempt at invading ALLD

when carrying capacity is relatively low, selection pressure is relatively low, the

probability of playing another round is relatively high, and the value of R is

relatively high. To explain why growth might actually hurt TFT at lower and

lower values of N for higher carrying capacities, we consider that death is a

random process in our model, in that it is independent of fitness. Thus, for

a single TFT player in a reasonably sized population of ALLD players, death

mostly affects the ALLD players, since the chance of the single TFT player

getting chosen for elimination is very low. When carrying capacity is relatively

high in comparison to N, even the ALLD players will be very unlikely to die

off, making it harder for a TFT player to increase fitness through reproduction,
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since though the TFT player may reproduce, the population will still be full of

ALLD players who are dying very slowly, and whose fitnesses are increased by

the presence of more TFT players. Thus, for TFT’s proportion of the population

to increase, a very delicate balance must exist between the benefit that TFT

receives from playing itself and the number and benefit of ALLD players against

TFT. As a result, it is helpful for ALLD players to be dying off more quickly

and for R to be increased, as our results show.

We now examine a completely new model for a population of TFT and ALLD

players. We similarly define w to measure the effect of the game on fitness, but

this time we approximate the game to be infinite and take a time-averaged

payoff, meaning that the payoff matrix is simply




TFT ALLD

TFT R P

ALLD P P




This will obviously be to the benefit of TFT, but we can consider it as a

reasonable approximation to very long, finite games. Under this assumption,

the fitness f of a TFT player is 1−w + w(R(i− 1) + P (N − i))/(N − 1) where

N is the total population and i is the number of TFT players, as before. The

fitness g of an ALLD player is simply 1 − w + wP . We can then calculate the

total fitness of a population N,i as:

T (N, i, w) =
(i2 − i)(Rw − Pw) + (N2 −N)(1− w + Pw)

N − 1

In this model, we define carrying capacity to be dependent on the population’s

fitness, with U representing our absolute upper bound for carrying capacity,
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regardless of fitness. More precisely, we define

C(N, i, U,w) = U
T (N, i, w)

N(1− w + wR)

The denominator of this expression represents the maximum possible fitness for

a population of size N, which occurs when all players are playing TFT. Next,

we define a population adjusment term, notated ad:

ad(N, i, U,w) = Floor(N(1− N

C(N, i, U,w)
))

The Floor function returns the greatest integer less than or equal to its argu-

ment, so for example Floor(2) = 2, Floor(2.8) = 2, and Floor(−.01) = −1.

The value of ad is always an integer, and may be zero. At every time step, we

calculate the adjustment term, and if it is positive, we add the given number of

players to the population, and if it is negative, we eliminate the given number

of existing players. We choose which players to add or eliminate stochastically,

with reproduction dependent on fitness and death random. If we are adding a

player, the probability that it will be a TFT is if(N,i,w)
T (N,i,w) , and if we are elimi-

nating a player, the probability that it will be a TFT is i/N . We make each of

our choices for reproduction and death independently. We define a stable state

to be a collection of values (N,i,U) for which ad(N,i,U,w)=0, given a fixed w.

To be stable, a state’s adjustment term without the floor function must then

satisfy 0 ≤ ad < 1. By solving ad < 1 for i, we obtain the following condition

for stablility:

(i2 − i) <
N3(1−w+Rw)

U − (N2 −N)(1− w + Pw)
Rw − Pw
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We note that as i takes integer values between 0 and N, the function (i2 −

i) increases, and its minimum value is 0. When the right hand side of this

inequality is negative, no value of i can be stable. By setting P = 1 and R = 3,

assuming N to be positive, and solving the quadratic equation (1 + 2w)N2 −

UN + U = 0, we find that if

N <
U +

√
U2 − 4U(1 + 2w)
2(1 + 2w)

there is no stable value of i, and hence no stable states at that value of N. We

have disregarded the root at

N =
U −

√
U2 − 4U(1 + 2w)
2(1 + 2w)

because this value is always less than 2 as long as U > 12. We now solve ad ≥ 0,

and find:

(i2 − i) ≥
(N3−N2)(1−w+Rw)

U − (N2 −N)(1− w + Pw)
Rw − Pw

Thus stable states must satisfy both these inequalities for i2− i. We now claim

that this process can oscillate indefinitely for certain values of the parameters,

but will always reach a stable state in the limit as the number of time steps

goes to infinity. Oscillations can occur because adding a defector can sometimes

allow you to exceed carrying capacity. To see an example of this, we consider

the case U=12, N=10, and i=9. We calculate the adjustment to be 1, so there

is a small probability that we will add a defector, in which case we have N=11,

i=9, and carrying capacity is 10.8156, so the adjustment at the next step will

be -1, meaning that we may kill a defector and end up where we started, hence
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illustrating the possibility of arbitrarily long oscillation. But of course, if we

let the process continue infinitely long, every adjustment that has a non-zero

probability of occurring will eventually occur.

First of all, it is obvious that we cannot stay above carrying capacity in-

definitely, since adjustments for those states are always negative integers, and

we cannot subtract individuals indefinitely. Therefore, it is sufficient to estab-

lish that when a state is below carrying capacity and the adjustment term is

positive, there is always a possible choice of individuals that will cause the pop-

ulation to approach carrying capacity but never exceed it. Thus, if we keeping

making such changes, the adjustment term will approach and eventually reach

0 (since adjustments occur by integers in discrete steps, the approach must be

a finite process). Since a TFT player’s fitness is always greater than or equal

to the average fitness of the population when the game is infinite, adding a

TFT player can never decrease the carrying capacity. We can then assume, in

the worst case, that C remains constant. Thus, adding all TFT players in the

adjustment phase can never cause a population to exceed carrying capacity at

the next time step because N(1 − N/C) ≤ C − N . To see this, we multiply

both sides by C: N(C − N) ≤ C(C − N) holds, because C ≥ N . Therefore,

regardless of the starting conditions, the process will eventually reach a stable

state. If we consider values of N for which stable values of i exist, we note that

the lowest i satisfying

(i2 − i) ≥
(N3−N2)(1−w+Rw)

U − (N2 −N)(1− w + Pw)
Rw − Pw

is guaranteed to be stable. We can replace this inequality with equality, and
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solve for i:

i =
1±

√
1 + 4

(1+2w)(N3−N2)
U −(N2−N)

2w

2

Consider the condition i
N ≥ d for d a real number satisfying 0 ≤ d ≤ 1. Then

when i
N = d the left hand side of the above equation is real, so the expression

under the square root on the right must be positive. Thus, the lesser root

is strictly less than one, and we can disregard it. Since the expression under

the square root is strictly increasing with respect to N when the expression is

positive, no imaginary solutions appear under this condition. Therefore, we can

solve for N such that:

1 +

√
1 + 4

(1+2w)(N3−N2)
U −(N2−N)

2w

2
= Nd

This yields two values of N, the lesser of which is always less than our lower

bound of

N >
U +

√
U2 − 4U(1 + 2w)
2(1 + 2w)

and the greater of which is always above this value. Therefore, as long as N is

greater than the larger root, all stable states for that N will have at least Nd

TFT players. We can therefore describe the ratio of the number of N with this

property over the number of N with any stable values of i as:

U − Floor[ 1
2(1+2w) (1 + U + 2w + 2d2Uw +

√
4U(1 + 2w)(−1− 2dw) + (−1− U − 2w − 2d2Uw)2]

U − Floor[U+
√

U2−4U(1+2w)

2(1+2w) ]

If we allow random starting conditions of N and i, we would expect this value to

be a reasonable estimate of the proportion of trials that will end in stable states

with at least Nd TFT players. This estimate needs to be adjusted, however,
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since it may be that some stable states are much more likely to be reached than

others. By running randomized trials and comparing our results, we found that

multiplying this ratio by 3/4 and adding certain small constants to it in specific

ranges of w,d,and U, we were able to improve our estimate to be within a ±.07

range of absolute error as long as U ≥ 100, w is ≥ .02 but still reasonably small,

and .3 ≤ d ≤ .8. These adjustments are included in the following code, which

returns our estimate:

If(d ≥ 0.8 ∧ d < 0.9, Return( 3
4 ratio(U, d, w)− 0.06)),

If(d ≥ 0.7 ∧ d < 0.8, Return( 3
4 ratio(U, d, w)− 0.035)),

If(d ≥ 0.6 ∧ d < 0.7, Return( 3
4 ratio(U, d, w)− 0.03)),

If(d ≥ 0.5 ∧ d < 0.6, If(w < 0.03 ∧ w ≥ 0.02 ∧ U ≥ 100 ∧ U < 150,

Return( 3
4 ratio(U, d, w) + 0.07), Return( 3

4 ratio(U, d, w)− 0.01))),

If(d ≥ 0.4 ∧ d < 0.5, If(w < 0.035 ∧ w ≥ 0.02, Return( 3
4 ratio(U, d, w) + 0.06),

Return( 3
4 ratio(U, d, w) + 0.01))),

If(d ≥ 0.3 ∧ d < 0.4, Return( 3
4 ratio(U, d, w) + 0.07)))

We can also apply this model to a population of defectors and cooperators,

each playing one round of prisoner’s dilemma against each other. In this case

the total fitness of a population of N total players with i cooperators is:

w

N − 1
(−i2 + (3N − 2)i) + N

(Here we have used S = 0, P = 1, R = 3, T = 5). We note that for 0 ≤ i ≤ N
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and N ≥ 2, this is an increasing function of i and N. Hence, adding cooperators

to a population will always raise the average fitness, and so if we define carrying

capacity as dependent on fitness and an upper bound U as before, and the

adjustment term as before, we see that once again, the system will always reach

a stable state. By solving for adjustment < 1, we find:

−i2 + (3N − 2)i < (
N3(1 + 2w)
(N − 1)U

−N)(
N − 1

w
)

So, there can be no stable values of i when the right-hand side of this expression

is negative, which occurs, like in the TFT vs. ALLD case when:

N <
U +

√
U2 − 4U(1 + 2w)
2(1 + 2w)

(Again we have assumed U > 12 and N ≥ 2 as an expedient means of discarding

the negative root). We now solve adjustment ≥ 0 and obtain:

N2(1 + 2w)− UN

Uw
(N − 1) < −i2 + (3N − 2)i

From which we conclude that for values of N with stable values of i, the lowest

value of i satisfying ad ≥ 0 is:

i =
3N − 2−

√
(3N − 2)2 − 4(N−1)

Uw (N2(1 + 2w)− UN)

2

So if we set this equal to d (again, a percentage between 0 and 1) and solve for

N, we find two solutions, one of which is less than U
1+2w and the other is greater

than this value. (This is a critical value, since for N less than this, i = 0 will

satisfy the condition that the adjustment is non-negative.) The greater root is:

1 + U + 2w + 3dUw − d2Uw +
√
−4U(1 + 2w)(1 + 2dw) + (1 + U + 2w + 3dUw − d2Uw)2

2 + 4w
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So we can define our ratio like before as:

U − Floor[root]

U − Floor[U+
√

U2−4U(1+2w)

2(1+2w) ]

where root refers to the greater root given above. By running random trials,

we found that multiplying this ratio by 5/4 and similarly adjusting by small

constants we can arrive at a reasonable estimate of the percentage of random

trials resulting in at least Nd cooperators (again, a range of ±.07 absolute error).

To obtain our estimate, one would use the following code (where ratio2 refers

to the ratio above):

If(d ≥ 0.8 ∧ d < 0.9, If(w ≥ 0.04, Return( 5
4 ratio2(U,w, d) + 0.04),

If(w ≥ 0.02 ∧ w < 0.03, Return( 5
4 ratio2(U,w, d) + 0.02), Return( 5

4 ratio2(U,w, d)))))

If(d ≥ 0.7 ∧ d < 0.8, If(w ≥ 0.04, Return( 5
4 ratio2(U,w, d) + 0.04),

If(w ≥ 0.03 ∧ w < 0.04, Return( 5
4 ratio2(U,w, d) + 0.02) , Return( 5

4 ratio2(U,w, d)))))

If(d ≥ 0.6 ∧ d < 0.7, If(w ≥ 0.03, Return( 5
4 ratio2(U,w, d) + 0.04)))

If(d ≥ 0.5 ∧ d < 0.6, Return( 5
4 ratio2(U,w, d) + 0.025))

If(d ≥ 0.4 ∧ d < 0.5, Return( 5
4 ratio2(U,w, d) + 0.02))

If(d ≥ 0.3 ∧ d < 0.4, Return( 5
4 ratio2(U,w, d) + 0.03)))

If we consider games between TFT and ALLD with a parameter n that

represents the probability of playing another round, then we can estimate the

percentage of random trials that will end with at least Nd TFT players by

taking a weighted average of our two estimates of the one-round and infinite
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game results, using n as the weight on the infinite game. We would expect this

estimate to be within about ±.1 absolute error, since the errors on each estimate

seem to be independent, and therefore will not likely compound.

These estimates reveal an interesting tendency towards stable, mixed pop-

ulations, even in the extreme cases of the one-round and infinite games, where

one strategy is clearly superior to the other. For example, in the infinite game

for d approximately 1/3, U between 100 and 500, and .02 ≤ w ≤ .1, the esti-

mated percentage of random trials that will result in TFT reaching d percent

of the population is significantly greater than a half, but less than 3/4. So at

least 1/4 of the time the population will stabilize with less than a third TFT

players, which is surprising since TFT is dominant. Similarly, if d equals .8, for

the same range of U and w, we find the estimated ratio to be slightly less than

1/4, so TFT is often not able to reach extremely high percentages of the popu-

lation, despite its dominance. In the case of the one round game, we find that

cooperators can similarly persist as significant portions of stable populations,

despite the fact that the fitness of a defector is strictly greater. Thus, the model

has the curious feature that in the one round game, neither the strategy that is

best for the individual (defect), nor the strategy that is best for the population

(cooperate) is allowed to truly dominate. Even in the infinite game where TFT

is the superior strategy both for the population and the individual, ALLD often

survives by lowering the carrying capacity and therefore checking the growth of

TFT.

The ability to reach stable states of coexistence between cooperative and
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non-cooperative strategies is a characteristic this model shares with some spa-

tial models of populations playing Prisoner’s Dilemma, which often allow coop-

erators to survive by clustering together. Our model illustrates that non-spatial

mechanisms can also lead to stable, mixed populations, and it is not neces-

sary to limit a cooperator’s opponents to its spatial neighbors in order to see

cooperators survive even in an atmosphere of dominance.
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