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Abstract
We obtain several oscillation theorems for self-adjoint second-order mixed-
derivative linear dynamic equations on time scales. Wintner, Erbe–Peterson,
and Leighton–Wintner type oscillation theorems and a Hille–Wintner com-
parison type theorem are obtained for this mixed equation. Several examples
are given.

1. Introduction

We will be concerned with proving several oscillation theorems for the
formally self-adjoint second-order linear dynamic equation(

p(t)x∆
)∇

+ q(t)x = 0.(1.1)

Some analagous results for the equation(
p(t)x∆

)∆
+ q(t)xσ = 0(1.2)

have already been proven [2], [4]. Since corresponding to equation (1.1)
one can define a self-adjoint operator in the functional analysis sence, many
researchers prefer equation (1.1) to equation (1.2). Also equation (1.1) is
preferred because certain Green’s functions corresponding to (1.1) turn out
to be symmetric [1].

For completeness, we recall the following concepts related to the notion
of time scales. A time scale T is an arbitrary nonempty closed subset of
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the real numbers R. We assume throughout that T has the topology that it
inherits from the standard topology on the real numbers R. The forward
jump operator and the backward jump operator are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
where sup ∅ = inf T and inf ∅ = sup T. A point t ∈ T, is said to be left–
dense if ρ(t) = t and t > inf T, is right–dense if σ(t) = t and t < sup T,
is left–scattered if ρ(t) < t and right–scattered if σ(t) > t. If T has a
right-scattered minimum m, define Tκ := T\{m}, with Tκ = T otherwise.
Similarly, if T has a left-scattered maximum M , define Tκ := T\{M}, with
Tκ = T otherwise.

A function g : T → R is said to be right–dense continuous (rd–
continuous) provided g is continuous at right–dense points and at left–
dense points in T, left hand limits exist and are finite. The set of all such
rd–continuous functions on T is denoted by Crd(T). Similarly, a function
f : T → R is said to be left–dense continuous (ld–continuous) provided
f is continuous at left–dense points and at right–dense points in T, right
hand limits exist and are finite. The set of all such ld–continuous functions
on T is denoted by Cld(T). The (forward) graininess function µ and the
backwards graininess function ν for a time scale T are defined by

µ(t) = σ(t)− t, ν(t) := t− ρ(t),

and for any function f : Tκ → R and any function g : Tκ → R the notation
fσ(t) denotes f(σ(t)) and the notation gρ(t) denotes g(ρ(t)).

The following definitions and theorems, found in [3], have analogous re-
sults corresponding to the delta derivative, found in [2].

Definition 1.1. Fix t ∈ T and let x : T → R. Define x∇(t) to be the number
(if it exists) with the property that given any ε > 0 there is a neighborhood
U of t with

|[x(ρ(t))− x(s)]− x∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s|, for all s ∈ U.
In this case, we say x∇(t) is the nabla derivative of x at t and that x is
nabla differentiable at t.

The following theorem is important when studying nabla derivatives (see
[1] and [2, Theorem 8.41]).

Theorem 1.2. Assume that g : T → R and let t ∈ Tκ.
(i) If g is nabla differentiable at t, then g is continuous at t.
(ii) If g is continuous at t and t is left-scattered, then g is nabla differentiable
at t with

g∇(t) =
g(t)− g(ρ(t))

ν(t)
.

(iii) If g is nabla differentiable and t is left-dense, then

g∇(t) = lim
s→t

g(t)− g(s)
t− s

.
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(iv) If g is nabla differentiable at t, then g(ρ(t)) = g(t)− ν(t)g∇(t).
(v) If f and g are nabla differentiable at t, then

(fg)∇ (t) = fρ (t) g∇ (t) + f∇ (t) g (t) = f (t) g∇ (t) + f∇ (t) gρ (t) .

(vi) If f and g are nabla differentiable at t and g (t) gρ (t) 6= 0, then(
f

g

)∇
(t) =

f∇ (t) g (t)− f (t) g∇ (t)
g (t) gρ (t)

.

Definition 1.3. If G∇(t) = g(t), then the Cauchy (nabla) integral is
defined by ∫ t

a
g(s)∇s := G(t)−G(a).

The following [3, Theorem 4.4] is a generalization of L’Hôpital’s rule for
∇ derivatives.

Theorem 1.4 (L’Hôpital’s Rule). Assume f and g are ∇ differentiable on
T and let t0 ∈ T, and assume t0 is right-dense. Furthermore, assume

lim
t→t+0

f (t) = lim
t→t+0

g (t) = 0

and suppose there exists ε > 0 with

g (t) g∇ (t) > 0 for all t ∈ Rε (t0) .

Then

lim inf
t→t+0

f∇ (t)
g∇ (t)

≤ lim inf
t→t+0

f (t)
g (t)

≤ lim sup
t→t+0

f (t)
g (t)

≤ lim sup
t→t+0

f∇ (t)
g∇ (t)

.

The following important result appears in Atici and Gusinov [1] and has
been generalized by Messer in [3, Theorem 4.8].

Theorem 1.5. If f : T → R is ∆ differentiable on Tκ and if f∆ is contin-
uous on Tκ, then f is ∇ differentiable on Tκ and f∇ = f∆ρ on Tκ.

2. Preliminary Results

We consider the formally self-adjoint equation (1.1) with mixed deriva-
tives, where p, q are continuous and p(t) > 0 for all t ∈ T. We define the
set D to be the set of all functions x : T → R such that x∆ : Tκ → R is
continuous and

(
px∆

)∇ : Tκκ → R is continuous. A function x ∈ D is then
said to be a solution of (1.1) on T provided (p(t)x∆(t))∇ + q(t)x(t) = 0 for
all t ∈ Tκκ.

The following three results are proven in [1].

Theorem 2.1 (Existence and Uniqueness). If f is a continuous function of
t, t0 ∈ Tκκ, and x0, x∆

0 are given constants, then the initial value problem

Lx := (p(t)x∆(t))∇ + q(t)x(t) = f (t) , x (t0) = x0, x∆ (t0) = x∆
0

has a unique solution that exists on the set T.
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Definition 2.2. The Wronskian W (x, y) of two differentiable functions x
and y is defined by

W (x, y) (t) :=
∣∣∣∣ x(t) y(t)
x∆(t) y∆(t)

∣∣∣∣ , t ∈ Tκ.

If x and y are linearly dependent, then it follows that W (x, y) ≡ 0. The
next few results show that W (x, y) is either always 0 or never 0 for any pair
of solutions x and y of (1.1), so it can be used to determine whether or not
two solutions are linearly independent.

Definition 2.3. The Lagrange bracket {x; y} of two functions x and y is

{x; y} = pW (x, y)

Lemma 2.4 (Lagrange identity). If x, y ∈ D, then

(2.1) {x; y}∇ (t) = x(t)Ly(t)− y(t)Lx(t),

for t ∈ Tκκ.

Lemma 2.5 (Abel’s formula). If x and y are solutions of (1.1), then

W (x, y) (t) =
C

p(t)
for all t ∈ Tκ where C is a constant.

For any two solutions x and y of (1.1), W (x, y) ≡ 0 iff x and y are
linearly dependent on T and W (x, y) 6= 0 for all t ∈ Tκκ iff x and y are
linearly independent.

Definition 2.6. Assume x : T → R is delta differentiable with x(t) 6= 0,
then the Riccati substitution is

(2.2) z(t) =
p(t)x∆(t)
x(t)

for t ∈ Tκ.

A continuous function on a time scale may change sign without ever as-
suming the value of zero, which leads to the following.

Definition 2.7. A function x : T → R has a generalized zero at t provided
x(t) = 0 and if ρ(t) < t we say x has a generalized zero in (ρ (t) , t) if

p (ρ (t))x (ρ (t))x (t) < 0.

Throughout this paper we assume

ω := sup T
and if ω < ∞, T is a time scale such that ρ(ω) = ω. In this last case we
do not assume that the coefficient functions in Lx = 0 are defined at ω
(so ω is a singular point). Let b ∈ T with b < ω, then we say that (1.1)
is oscillatory on [b, ω) if every nontrivial real-valued solution has infinitely
many generalized zeros in [b, ω). Otherwise (1.1) is nonoscillatory on [b, ω).
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The next result [3, Theorem 4.58] is central to the proof of several oscil-
lation theorems.

Theorem 2.8. If x is a solution of (1.1) with no generalized zeros in T,
then z as defined by (2.2) for t ∈ Tκ is a solution to the Riccati equation

(2.3) Rz := z∇ + q +
(zρ)2

pρ + νzρ
= 0

on Tκ and

(2.4) pρ(t) + ν(t)zρ(t) > 0

for t ∈ Tκκ.

The following two results [3, Theorems 4.49 and 4.52] pertain to the fac-
torization of (1.1) under certain conditions.

Theorem 2.9 (Polya factorization). If (1.1) has a positive solution u on
T, then for x ∈ D,

(2.5) Lx(t) = ψ1(t)
(
ψ2(t) (ψ1(t)x(t))

∆
)∇

, t ∈ Tκκ,

where

ψ1(t) :=
1
u(t)

> 0, t ∈ T and ψ2(t) := p(t)u(t)uσ(t) > 0, t ∈ Tκκ.

Theorem 2.10 (Trench factorization). If (1.1) has a Polya factorization
on [a, ω), then (1.1) has a Polya factorization with∫ ω

a

1
ψ2(s)

∆s = +∞,

which is called a Trench factorization of (1.1) on [a, ω).

The following result [3, Theorem 4.45] elaborates on the properties of a
specific solution provided by the factorizations.

Theorem 2.11 (Recessive and Dominant Solutions). If (1.1) has a Trench
factorization on [a, ω), then the solution u = 1

ψ1
satisfies∫ ω

a

1
p (t)u (t)uσ (t)

∆t = +∞

and for any linearly independent solution v,

lim
t→ω

u (t)
v (t)

= 0

Also, ∃ b ∈ [a, ω) such that∫ ω

b

1
p (t) v (t) vσ (t)

∆t < +∞
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and for all t ∈ [b, ω),

p (t) v∆ (t)
v (t)

>
p (t)u∆ (t)

u (t)
.

We call u a recessive solution of (1.1) at ω, and the above properties of
u make it unique up to multiplication by a nonzero constant. Any linearly
independent solution v is called a dominant solution at ω.

The following lemma (for an analagous result see [5, Lemma 13] and [4,
Lemma 1.4]) is used in the proof of the Hille–Wintner theorem.

Lemma 2.12. Assume

(2.6) lim inf
t→ω

∫ t

T
q(s) ∇s ≥ 0 and not ≡ 0

for all large T , and

(2.7)
∫ ω

a

1
p(s)

∆s = ∞.

If x is a solution of (1.1) such that x(t) > 0 for t ∈ [T, ω), then there exists
S ∈ [T, ω) such that x∆(t) > 0 for t ∈ [S, ω).

Equivalent theorems to the following two appear in [3, Theorems 4.66 and
4.68].

Theorem 2.13. If the Riccati dynamic inequality Rz ≤ 0 has a solution on
[a, ω), then Lx = 0 is nonoscillatory on [a, ω).

Theorem 2.14 (Sturm Comparison Theorem). Suppose we have two equa-
tions of the same form as (1.1),

L1x =
(
p1x

∆
)∇

+ q1x = 0

L2x =
(
p2x

∆
)∇

+ q2x = 0

such that q2 ≤ q1 and 0 < p1 ≤ p2 on [a, ω). Then if L1x = 0 is nonoscilla-
tory on [a, ω), then L2x = 0 is nonoscillatory on [a, ω).

3. Main Results

Theorem 3.1 (Wintner’s Theorem). Assume sup T = ∞, a ∈ T, and there
exist constants K and M such that ν(t) ≥ K > 0 and M ≥ p(t) > 0 on
[a,∞), and furthermore ∫ ∞

a
q(t)∇t = +∞.

Then (1.1) is oscillatory on [a,∞).
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Proof. Assume (1.1) is nonoscillatory on [a,∞), then there is a solution x
that does not have infinitely many generalized zeros on [a,∞). Then there
is a t0 ∈ (a,∞) such that x has no generalized zeros on [ρ(t0),∞). We
then perform the Riccati substitution (2.2) to obtain a solution z to (2.3)
satisfying (2.4) on [t0,∞). Then for t ∈ [t0,∞)

z∇(t) = −q(t)− (zρ(t))2

pρ(t) + ν(t)zρ(t)
.

It follows that∫ t

t0

z∇(s)∇s = −
∫ t

t0

q(s)∇s−
∫ t

t0

(zρ(s))2

pρ(s) + ν(s)zρ(s)
∇s

z (t)− z (t0) ≤ −
∫ t

t0

q(s)∇s

z (t) ≤ z (t0)−
∫ t

t0

q(s)∇s,

where we have used (2.4) to obtain the inequality. We then have

lim
t→∞

z (t) = −∞.

However

pρ(t) + ν(t)zρ(t) > 0 ⇒ zρ(t) > −p
ρ(t)
ν(t)

≥ −M
K
,

which is a contradiction. �

Theorem 3.2. Assume ∀ t0 ∈ [a, ω), ∃ a0 ∈ (t0, ω), b0 ∈ (a0, ω) such that
ν (a0) > 0, ν (b0) > 0 and∫ ρ(b0)

ρ(a0)
q(s)∇s ≥ pρ (a0)

ν (a0)
+
pρ (b0)
ν (b0)

.

Then (1.1) is oscillatory on [a, ω).

Proof. Assume (1.1) is nonoscillatory on [a, ω), then there is a solution x
that does not have infinitely many generalized zeros on [a, ω). Then there
is a t0 ∈ (a, ω) such that x has no generalized zeros on [ρ(t0), ω). We then
use (2.2) to obtain a solution z to (2.3) satisfying (2.4) on [t0, ω). Then for
any a0 ∈ (t0, ω), b0 ∈ (a0, ω) we get the following:

z∇(t) = −q(t)− (zρ(t))2

pρ(t) + ν(t)zρ(t)∫ ρ(b0)

ρ(a0)
z∇∇s = −

∫ ρ(b0)

ρ(a0)
q∇s−

∫ ρ(b0)

ρ(a0)

(zρ)2

pρ + νzρ
∇s

zρ (b0)− zρ (a0) ≤ −
∫ ρ(b0)

ρ(a0)
q∇s−

∫ a0

ρ(a0)

(zρ)2

pρ + νzρ
∇s
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zρ (b0) ≤ zρ (a0)−
∫ ρ(b0)

ρ(a0)
q∇s− ν (a0) (zρ (a0))

2

pρ (a0) + ν (a0) zρ (a0)

zρ (b0) ≤ pρ (a0) zρ (a0)
pρ (a0) + ν (a0) zρ (a0)

−
∫ ρ(b0)

ρ(a0)
q∇s

zρ (b0) <
pρ (a0)
ν (a0)

−
∫ ρ(b0)

ρ(a0)
q∇s∫ ρ(b0)

ρ(a0)
q∇s <

pρ (a0)
ν (a0)

− zρ (b0)∫ ρ(b0)

ρ(a0)
q∇s <

pρ (a0)
ν (a0)

+
pρ (b0)
ν (b0)

,

which is the desired contradiction. �

Theorem 3.3. Assume sup T = ∞, a ∈ T, p ≡ 1, and ∀ t0 ∈ [a,∞),
∃ {tk}∞k=1 ⊂ [t0,∞), tk strictly increasing and lim

k→∞
tk = ∞. Additionally,

assume that ∃ K1, K2 such that 0 < K1 ≤ ν (tk) ≤ K2 for all k ∈ N and

lim
k→∞

∫ ρ(tk)

ρ(t1)
q(s)∇s ≥ 1

ν (t1)
.

Then (1.1) is oscillatory on [a,∞).

Proof. Assume (1.1) is nonoscillatory on [a,∞), then there is a solution x
that does not have infinitely many generalized zeros on [a,∞). Then there
is a t0 ∈ (a,∞) such that x has no generalized zeros on [ρ(t0),∞). Without
loss of generality we can assume x(t) > 0 on [t0,∞). We then perform the
Riccati substitution to obtain a solution z to (2.3) satisfying (2.4) on [t0,∞).
Then for any k ∈ N

z∇ = −q − (zρ)2

1 + νzρ∫ ρ(tk)

ρ(t1)
z∇∇s = −

∫ ρ(tk)

ρ(t1)
q∇s−

∫ ρ(tk)

ρ(t1)

(zρ)2

1 + νzρ
∇s

zρ (tk)− zρ (t1) ≤ −
∫ ρ(tk)

ρ(t1)
q∇s−

∫ t1

ρ(t1)

(zρ)2

1 + νzρ
∇s

zρ (tk) ≤ zρ (t1)−
∫ ρ(tk)

ρ(t1)
q∇s− ν (t1) (zρ (t1))

2

1 + ν (t1) zρ (t1)

zρ (tk) ≤ zρ (t1)
1 + ν (t1) zρ (t1)

−
∫ ρ(tk)

ρ(t1)
q∇s
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We will now assume that lim
k→∞

zρ (tk) = 0, and shortly produce a contradic-

tion. The proof of this assumption then follows.

lim
k→∞

zρ (tk) ≤ lim
k→∞

zρ (t1)
1 + ν (t1) zρ (t1)

− lim
k→∞

∫ ρ(tk)

ρ(t1)
q∇s

0 ≤ zρ (t1)
1 + ν (t1) zρ (t1)

− 1
ν (t1)

0 ≤ ν (t1) zρ (t1)− 1− ν (t1) zρ (t1)
0 ≤ −1.

We thus have a contradiction, so (1.1) must be oscillatory on [a,∞).

It remains to prove our previous claim that

lim
k→∞

zρ(tk) = 0.

To see this let

F (t) :=
(zρ(t))2

1 + ν(t)zρ(t)
= −z∇(t)− q(t).

¿From lim
k→∞

∫ ρ(tk)
ρ(t1) q(s)∇s ≥

1
ν(t1) we know ∃M such that ∀ k,

∫ ρ(tk)
ρ(t1) q(s)∇s >

M . Now consider
k−1∑
j=2

F (tj) ν (tj) =
k−1∑
j=2

∫ tj

ρ(tj)
F (t)∇t

≤
∫ ρ(tk)

t1

F (t)∇t

=
∫ ρ(tk)

ρ(t1)
F (t)∇t−

∫ t1

ρ(t1)
F (t)∇t

= −
∫ ρ(tk)

ρ(t1)
z∇ (t)∇t−

∫ ρ(tk)

ρ(t1)
q (t)∇t− ν (t1)F (t1)

= −zρ (tk) + zρ (t1)−
∫ ρ(tk)

ρ(t1)
q (t)∇t− ν (t1) (zρ (t1))

2

1 + ν (t1) zρ (t1)

= −zρ (tk) +
zρ (t1)

1 + ν (t1) zρ (t1)
−

∫ ρ(tk)

ρ(t1)
q (t)∇t

≤ 1
ν (tk)

+
1

ν (t1)
−M

≤ 2
K1

−M.

So the series
∑∞

j=2 F (tj)ν(tj) converges, and thus lim
k→∞

F (tk) ν (tk) = 0.

Additionally, as ν(tk) ≥ K1, lim
k→∞

F (tk) = 0. Since 0 < K1 ≤ ν(tk) ≤ K2
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for k ∈ N, we have that

F (tk) =
(zρ(tk))2

1 + ν(tk)zρ(tk)
≥ (zρ(tk))2

1 +Kzρ
(
tkj

) > 0,

where K = K2 if zρ(tk) ≥ 0 and K = K1 if zρ(tk) < 0. Then

lim
j→∞

zρ (tk)
2

1 +Kzρ (tk)
= 0

which implies that
lim
k→∞

zρ (tk) = 0.

�

Theorem 3.4 (Leighton–Wintner Theorem). If∫ ω

a

1
p(t)

∆t =
∫ ω

a
q(t)∇t = +∞,

then (1.1) is oscillatory on [a, ω).

Proof. Assume (1.1) is nonoscillatory on [a, ω), then by Theorem 2.11 there
is a dominant solution x of (1.1) with finitely many generalized zeros on
[a, ω), so that for some T ∈ [a, ω), x has no generalized zeros on [ρ(T ), ω) .
Also ∫ ω

T

1
p(t)x(t)xσ(t)

∆t < +∞.

If we let z(t) = p(t)x
∆(t)
x(t) , t ∈ [ρ(T ), ω), then from Theorem 2.8 we have

pρ(t) + ν(t)zρ(t) > 0 and

z∇ = −q(t)− (zρ(t))2

pρ(t) + ν(t)zρ(t)
≤ −q(t)

on [T, ω). It follows that

z(t) ≤ z (T )−
∫ t

T
q(s)∇s, t ∈ [T, ω)

which implies that
lim
t→ω

z(t) = −∞.

Then ∃ T1 ∈ [T, ω) such that z(t) = p(t)x
∆(t)
x(t) < 0 on [T1, ω). If x(t) > 0 on

[T1, ω), then x is a positive decreasing function and∫ ω

T1

1
p(t)x(t)xσ(t)

∆t ≥ 1
x (T1)

2

∫ ω

T1

1
p(t)

∆t = +∞.

Thus we have a contradiction. If x(t) < 0, on [T1, ω), then x is a negative
increasing function, and the same conclusion holds. Thus (1.1) is oscillatory
on [a, ω). �
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Next we show that the Hille–Wintner theorem given in Erbe and Peterson
[4] for the dynamic equation (p(t)x∆)∆ + q(t)xσ = 0 holds for the mixed
dynamic equation (1.1).

Theorem 3.5 (Hille–Wintner Theorem). Suppose we have two equations of
the same form as (1.1),

Lix =
(
pix

∆
)∇

+ qix = 0, i = 1, 2

such that

(3.1) 0 < p1(t) ≤ p2(t), t ∈ [a, ω)

(3.2)
∫ ω

a

1
p1(t)

∆t = +∞

(3.3)
∫ ω

a
q1(t)∇t and

∫ ω

a
q2(t)∇t exist

(3.4) 0 ≤
∫ ω

t
q2(s)∇s ≤

∫ ω

t
q1(s)∇s, t ∈ [a, ω)

(3.5) ∃M > 0 such that pρ1(t) ≤Mν(t) provided ν(t) > 0.

Then if L1x = 0 is nonoscillatory on [a, ω), then L2x = 0 is nonoscillatory
on [a, ω).

Proof. Let {tk}∞k=1 ⊂ (a, ω) be a strictly increasing sequence of left-scattered
points such that lim

k→∞
tk = ω. If no such sequence exists, then T is a real

interval past sufficiently large t, and the classic Hille–Wintner theorem (see
[6] and [7]) applies. Also, as L1x = 0 is nonoscillatory, ∃ T ∈ (a, ω) and a
solution x of L1x = 0 with x(t) > 0 on [ρ(T ), ω). We then perform a Riccati
substitution to get a z such that

R1z = z∇ + q1 +
(zρ)2

pρ1 + νzρ
= 0

and

pρ1 + νzρ > 0(3.6)

on [T, ω). Then if we let

F (t) :=
(zρ(t))2

pρ1(t) + ν(t)zρ(t)
≥ 0

for t ∈ [T, ω), we have for t ≥ T by integrating both sides of R1z(t) = 0

z (t) +
∫ t

T
q1(s)∇s+

∫ t

T
F (s)∇s = z (T ) .(3.7)

We have from Lemma 2.12, (3.2), and (3.4) that z (t) > 0, so then as z (T ) is
finite and

∫ ω
T q1(s)∇s exists we must have

∫ ω
T F (s)∇s < ∞. Thus lim

t→ω
z (t)
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exists. We will now show that lim
t→ω

z (t) = 0. We have from (3.6) and (3.5)
that

z (tk) > −p
ρ
1 (tk)
ν (tk)

≥ −M

so using (3.7) with t = tk we obtain

−M +
∫ tk

T
q1(s)∇s+

∫ tk

T
F (s)∇s ≤ z (T ) .

Then if we let n0 be the first k for which tk ≥ T ,
∞∑

k=n0

ν (tk)F (s) (tk) =
∞∑

k=n0

∫ tk

ρ(tk)
F (s)∇s ≤

∫ tk

T
F (s)∇s <∞.

Thus we have

lim
k→∞

ν (tk)F (tk) = lim
k→∞

(zρ (tk))
2

pρ
1(tk)
ν(tk) + zρ (tk)

= 0.

So for any ε > 0, ∃ an integer K such that k ≥ K implies

(zρ (tk))
2

pρ
1(tk)
ν(tk) + zρ (tk)

< ε

(zρ (tk))
2 <

pρ1 (tk)
ν (tk)

ε+ zρ (tk) ε

(zρ (tk))
2 − zρ (tk) ε+

ε2

4
≤ Mε+

ε2

4
+
√
Mε3(

zρ (tk)−
ε

2

)2
≤

(√
Mε+

ε

2

)2

|zρ (tk)| ≤
√
Mε+ ε.

Thus lim
k→∞

zρ (tk) = 0. Then by continuity and the existence of lim
t→∞

z (t) we

have that
lim
t→ω

z (t) = 0.

Using (3.7) we have∫ ω

T
q1(s)∇s+

∫ ω

T
F (s)∇s = z (T ) .

Now we define

v (t) :=
∫ ω

t
q2(s)∇s+

∫ ω

t
F (s)∇s ≤ z (t) ,

where the inequality is due to (3.4). Also

v∇(t) = −q2(t)−
(zρ(t))2

pρ1(t) + ν(t)zρ(t)
.
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Then since for each fixed t, the function H (m) = m2

pρ
1(t)+ν(t)m

is strictly
increasing for m ≥ 0, we have

v∇(t) + q2(t) +
(vρ(t))2

pρ1(t) + ν(t)vρ(t)
≤ 0.

We thus have by Theorem 2.13 that(
p1(t)x∆

)∇
+ q2(t)x = 0

is nonoscillatory on [a, ω), and then by Theorem 2.14 and (3.1) that L2x = 0
is nonoscillatory on [a, ω). �

Theorem 3.6. Suppose the conditions of Theorem 3.5 hold with (3.4) re-
placed by

(3.8)
∣∣∣∣∫ ω

t
q2(s)∇s

∣∣∣∣ ≤ ∫ ω

t
q1(s)∇s, t ∈ [a, ω),

and (3.5) replaced by
(3.9)
∃M > m > 0 such that mν(t) ≤ pρ1(t) ≤Mν(t) provided ν(t) > 0.

If q1 (tk) > 0 for sufficiently large tk and

(3.10) lim inf
k→∞

q2 (tk)
q1 (tk)

> −1

for {tk} as previously defined, then the same conclusion holds.

Proof. Since (3.9) is a stronger condition then (3.5), we need only show that

(zρ(t))2

pρ1(t) + ν(t)zρ(t)
≥ (vρ(t))2

pρ1(t) + ν(t)vρ(t)

for t ∈ [T, ω). However, we do not have 0 ≤ v(t) ≤ z(t) for t ∈ [T, ω) as
before in the proof of Theorem 3.5, rather we have

|v (t)| ≤
∣∣∣∣∫ ω

t
q2(s)∇s

∣∣∣∣ +
∫ ω

t
F (s)∇s ≤ z (t)

for t ∈ [T, ω). The desired inequality is trivially true at left-dense points, and
we have shown previously that it is true at points where 0 ≤ v(t) ≤ z(t), so
we need only consider left-scattered points where v(t) < 0. At such points,
an equivalent condition is

pρ1 (zρ)2 + νvρ (zρ)2 ≥ pρ1 (vρ)2 + νzρ (vρ)2

pρ1

[
(zρ)2 − (vρ)2

]
≥ νvρzρ (vρ − zρ)

pρ1 (vρ + zρ) ≥ −νvρzρ

pρ1
ν

≥ − vρ

1 + vρ

zρ

.
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Now provided that there is no sequence {tn} such that lim
n→∞

tn = ω and

lim inf
n→∞

vρ (tn)
zρ (tn)

= −1

we then have

lim
t→∞

vρ(t)

1 + vρ(t)
zρ(t)

= 0

and then by (3.9) we have that the desired condition holds. We now assume
that we have such a sequence {tn}, and produce a contradiction. Then as
q1(t) > 0 for sufficiently large t, we have z∇(t) < 0 for sufficiently large t.
Then using L’Hôpital’s rule for the time scale nabla case (Theorem 1.4) we
get that

−1 = lim
n→∞

v(tn)
z(tn)

= lim
n→∞

v∇(tn)
z∇(tn)

= lim
n→∞

q2 + (zρ)2

pρ
1+νzρ

q1 + (zρ)2

pρ
1+νzρ

= lim
n→∞

q2 (pρ1 + νzρ) + (zρ)2

q1 (pρ1 + νzρ) + (zρ)2

= lim
n→∞

an
q2
q1

+ bn

an + bn
,

where

an = pρ1(tn) + ν(tn)zρ(tn) and bn = (zρ(tn))
2 /q1(tn).

Now by (3.10) we may choose 0 < ε < 2 such that q2(tn)
q1(tn) > −1 + ε for

sufficiently large n. We may then choose 0 < δ < ε such that for sufficiently
large n

an
q2(tn)
q1(tn) + bn

an + bn
< −1 + δ

an
q2(tn)
q1(tn)

+ bn < (−1 + δ) (an + bn)

an (−1 + ε) + bn < (−1 + δ) (an + bn)
(ε− δ) an < (δ − 2) bn

This cannot be as an > 0 and ε− δ > 0 while bn > 0 and δ − 2 < 0. �

4. Examples

Example 4.1. In this example we show that the q-difference equation

(4.1) x∆∇ +
1

(q − 1)t logq t
x = 0, t ∈ qN0
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is oscillatory on T = qN0 , where q > 1 is a constant. Let a0 := qk0 for some
fixed integer k0 > 0. Let q̃(t) := 1

(q−1)t logq t
for t ∈ T and consider∫ ∞

a0

q̃(t)∇t =
∫ ∞

qk0

q̃(t)∇t

=
∞∑
j=k0

q̃(qj)ν(qj)

=
∞∑
j=k0

1
(q − 1)qjj

(qj − qj−1)

=
1
q

∞∑
j=k0

1
j

= +∞.

Then by Wintner’s Theorem (Theorem 3.1), equation (4.1) is oscillatory on
T.

Example 4.2. Let T = {tk}∞k=0

⋃
{1} with tk = 1−

(
1
2

)k. Then for k > 0,

ν(tk) =
1
2k
, and µ(tk) =

1
2k+1

.

We claim that the dynamic equation

(4.2)
(
− ln(1− t)

ln 2
2

ln(1−t)
ln 2 x∆(t)

)∇
+ 2−

ln(1−t)
ln 2 x = 0

is oscillatory on the time scale interval [0, 1). Choose a = tj for a fixed
integer j > 0, then∫ ω

a

1
p(t)

∆t =
∫ 1

tj

1
p(t)

∆t

=
∞∑
k=j

1
p(tk)

µ(tk)

=
∞∑
k=j

1

− ln(1−tk)
ln 2 2

ln(1−tk)

ln 2

µ(tk)

=
∞∑
k=j

ln 2

− ln((1/2)k)2
ln((1/2)k)

ln 2

1
2k+1

=
∞∑
k=j

ln 2

k ln(2)2
−k ln 2

ln 2

1
2k+1

=
∞∑
k=j

1
2k

= +∞.
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We similarly have that∫ ω

a
q(t)∇t =

∞∑
k=j

2−
ln((1/2)k)

ln 2 ν(tk)

=
∞∑
k=j

2k
1
2k

= +∞

Then the Leighton–Wintner Theorem (Theorem 3.4) implies that (4.2) is
oscillatory on [0, 1).

Example 4.3. Consider the time scale T = ∪∞i=1{ci}
⋃
∪∞i=1{di}, where

c1 < d1 < c2 < d2 < . . . and di − ci =
(

1
i

)2 and ci+1 − di = i and c1 = 1.
Suppose p(t) ≡ 1 and q (ci) =

(
1
i

)2 and q (di) =
(

1
i

)5. We then have that∫ ∞

1

1
p(t)

∆t =
∫ ∞

1
1 ∆t = ∞

and ∫ ∞

1
q(t)∇t =

∞∑
i=1

[(
1
i

)7

+
i

(i+ 1)2

]
= +∞

Thus the Leighton–Wintner theorem guarantees that (1.1) is oscillatory on
[1,∞). However note that∫ ∞

1
q(t)∆t =

∞∑
i=1

[(
1
i

)4

+
(

1
i

)4
]
< +∞,

which is not the assumption needed in the analogue of the theorem for the
equation

(
px∆

)∆ + qxσ = 0, found in [2, Theorem 4.64]. We leave it to the
interested reader to show that this last equation is indeed nonoscillatory on
[1,∞).
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