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Abstract

We will be concerned with stability theory for dynamic equations on time scales.

Our main result deals with the stability of a perturbed linear dynamic equation. We

give several examples where our theorem applies, including an application to the dy-

namic logistic equation.
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1 Introduction

The study of dynamic equations on time scales was created by Stefan Hilger [4] to unify the
calculus of differential and difference equations, and to extend these to the calculus on time
scales. A time scale T is an arbitrary nonempty closed subset of the real numbers R. The
three most common examples of calculus on time scales are differential calculus, difference
calculus [6], and quantum calculus [5], i.e, when T = R, T = N and T = qN0 = {qt : t ∈ N0},
where q > 1. Dynamic equations on time scales have great potential for applications such
as in population dynamics. For example, take an insect population that dies every October
1st leaving its eggs behind and the eggs hatch every April 1st. A model of this population
would include a continuous portion from April 1st to October 1st and a discrete portion the
rest of the year. A model without time scales would have to split this into two cases and
analyze each. With time scales one model could handle both portions of the year. A time

scale for this could be T = P1,1 :=
∞
⋃

k=0

[2k, 2k + 1]. A cover story article in New Scientist [7]

highlighted the new possibilities that exist for modeling natural systems using time scales.

1This research was supported by NSF Grant DMS-0354008
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Some of these applications include models of the West Nile virus, the stock market, and any
population models that vary in continuous time and discrete time.

The following general results come from the work of Hilger [4] and appear in the books
by Bohner and Peterson [1] and [2]. For t ∈ T, we define the forward jump operator
σ : T → T by

σ(t) := inf{s ∈ T : s > t}

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

In this definition we put inf ∅ = sup T (i.e., σ(t) = t if T has a maximum t) and sup ∅ = inf T,
where ∅ denotes the empty set [1]. A point t ∈ T is defined to be left–dense if ρ(t) = t and
t > inf T, and is right–dense if σ(t) = t and t < sup T, and is left–scattered if ρ(t) < t and
is right–scattered if σ(t) > t. Points that are right-scattered and left-scattered at the same
time are called isolated (also a left-scattered maximum and a right-scattered minimum are
said to be isolated). A function g : T → R is said to be right–dense continuous (rd–
continuous) if g is continuous at right–dense points and at left–dense points in T, left hand
limits exist and are finite. The set of all such rd–continuous functions is denoted by Crd(T).
The graininess function µ for a time scale T is defined by µ(t) := σ(t) − t. Define Tκ to
be T − M if T has a left-scattered maximum M , otherwise let Tκ = T.

Definition 1.1. Fix t ∈ Tκ and let x : T → R. Define x∆(t) to be the number (if it exists)
with the property that given any ε > 0 there is a neighborhood U of t with

|[x(σ(t)) − x(s)] − x∆(t)[σ(t) − s]| ≤ ε|σ(t) − s|, for all s ∈ U.

In this case, we say x∆(t) is the (delta) derivative of x at t and that x is (delta)
differentiable at t.

Theorem 1.1. Assume that g : T → R and let t ∈ T.
(i) If g is differentiable at t, then g is continuous at t.
(ii) If g is continuous at t and t is right-scattered, then g is differentiable at t with

g∆(t) =
g(σ(t)) − g(t)

µ(t)
.

(iii) If g is differentiable and t is right-dense, then

g∆(t) = lim
s→t

g(t) − g(s)

t − s
.

(iv) If g is differentiable at t, then g(σ(t)) = g(t) + µ(t)g∆(t).

In this paper we will refer to the (delta) integral which we can define as follows:

Definition 1.2. If G∆(t) = g(t), then the Cauchy (delta) integral of g is defined by

∫ t

a

g(s)∆s := G(t) − G(a).
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It can be shown that if g ∈ Crd(T), then the Cauchy integral G(t) :=
∫ t

t0
g(s)∆s exists,

t0 ∈ T, and satisfies G∆(t) = g(t), t ∈ T. For a more general definition of the delta integral
see [1] and [2].

Definition 1.3. We say that a function p : T → R is regressive provided

1 + µ(t)p(t) 6= 0 for all t ∈ T
κ

holds. The set of all regressive and rd-continuous functions f : T → R will be denoted by

R = R(T) = R (T, R) .

Definition 1.4. We define the set R+ of all positively regressive elements of R by
R+ = R+ (T, R) = {f ∈ R : 1 + µ(t)f(t) > 0 for all t ∈ T}.

Theorem 1.2. If we define circle plus addition ⊕ on R by

(p ⊕ q) (t) := p(t) + q(t) + µ(t)p(t)q(t), t ∈ T

then (R,⊕) is an Abelian group. The additive inverse of p under the operation ⊕ is defined
by

	p(t) := −
p(t)

1 + µ(t)p(t)
.

Definition 1.5. We define circle minus subtraction 	 on R by

p 	 q := p ⊕ (	q) .

Definition 1.6 (Hilger [4]). For h > 0, define Zh by

Zh =
{

z ∈ C| −
π

h
< Im(z) ≤

π

h

}

,

and define Ch by

Ch =

{

z ∈ C|z 6= −
1

h

}

.

For h = 0, let Z0 = C0 = C, the set of complex numbers.

Definition 1.7 (Cylinder Transformation). For h ≥ 0, we define the cylinder transfor-
mation ξh : Ch → Zh by

ξh(z) =

{

1
h

Log (1 + zh) , if h > 0

z, if h = 0,

where Log is the principal logarithm function.
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Definition 1.8 (Exponential Function). If p ∈ R, then we define the exponential func-
tion by

ep(t, s) = exp

(
∫ t

s

ξµ(τ) (p (τ)) ∆τ

)

for s, t ∈ T,

where the cylinder transformation ξh(z) is defined in Definition 1.7.

Theorem 1.3 (Properties of the Exponential Function). If p, q ∈ R and t, r, s ∈ T,
then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t)) ep(t, s);

(iii) 1
ep(t,s) = e	p(t, s);

(iv) ep(t, s) = 1
ep(s,t) = e	p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vii)
ep(t,s)
eq(t,s) = ep	q(t, s).

Next are the two Variations of Constants formulas [1], each corresponding to one of the two
forms of a first order linear dynamic equation.

Theorem 1.4 (Variation of Constants). Suppose f is rd−continuous on T and p ∈ R,
then the unique solution of the initial value problem

x∆ = −p(t) xσ + f(t), x(t0) = x0

where t0 ∈ T and x0 ∈ R, is given by

x(t) = e	p(t, t0) x0 +

∫ t

t0

e	p( t, τ)f(τ)∆τ.

Theorem 1.5 (Variation of Constants). Suppose f is rd−continuous on T and p ∈ R.
If t0 ∈ T and x0 ∈ R, then the unique solution of the initial value problem

x∆ = p(t)x + f(t), x(t0) = x0

is given by

x(t) = ep(t, t0)x0 +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ.

Theorem 1.6 (Gronwall’s Inequality). Let y, f ∈ Crd and g ∈ R+, g ≥ 0. Then

y(t) ≤ f(t) +

∫ t

t0

y(τ) g(τ)∆τ for all t ∈ T

implies

y(t) ≤ f(t) +

∫ t

t0

eg(t, σ(τ)) f(τ)g(τ)∆τ for all t ∈ T.



Exponential Stability of Dynamic Equations 65

Theorem 1.7 (Bernoulli’s Inequality). Let α ∈ R with α ∈ R+. Then

eα(t, s) ≥ 1 + α(t − s) for all t ≥ s.

2 Main Results

For p ∈ R we define

βp(t) =

{ 1
µ(t) log |1 + µ(t)p(t)|, µ(t) > 0,

p(t), µ(t) = 0,

for t ∈ [t0,∞)T.
The following result is a slight generalization of a result due to Gard and Hoffacker [3]

which we state and prove here for convenience.

Theorem 2.1. Let p ∈ R, t0 ∈ T, and assume that r ≤ βp(t) ≤ q, for t ∈ [t0,∞)T. Then

er(t−t0) ≤ |ep(t, t0)| ≤ eq(t−t0)

for all t ∈ [ t0,∞)
T
.

Proof. This result follows easily from the formula

|ep(t, t0)| = |e
R

t

t0
ξµ(s)(p(s))∆s

|

= e
R

t

t0
<(ξµ(s)(p(s)))∆s

= e
R

t

t0
βp(s)∆s

,

and the fact that r ≤ βp(t) ≤ q, for t ∈ [t0,∞)T.

Now consider the dynamic equation

x∆ = g (t, x) , (2.1)

where we assume that solutions of initial value problems for (2.1) are unique and exist on the
whole time scale interval [t0,∞)T, which we assume is unbounded above. We let x (t, t1, x1)
denote the unique solution of the initial value problem (2.1), x(t1) = x1. For convenience,
we assume g (t, 0) = 0 so that x(t) ≡ 0 is a solution (called the trivial solution) of (2.1).
Next we define the different types of stability that will be of interest to us in this paper.

Definition 2.1. The trivial solution of (2.1) is stable on [ t0,∞)
T

provided given any
t1 ∈ [ t0,∞)

T
and ε > 0, there is a δ = δ (t1, ε) > 0 such that if |x1| < δ, then |x (t, t1, x1)| < ε

for all t ∈ [ t1,∞)
T
. The trivial solution of (2.1) is asymptotically stable on [ t0,∞)

T

provided it is stable on [ t0,∞)
T

and given any t1 ∈ [t0,∞)T there is a δ1 = δ1(t1) > 0 such
that if |x1| < δ1, then

lim
t→∞

x(t, t1, x1) = 0.
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In the latter case the trivial solution of (2.1) is exponentially asymptotically stable on
[ t0,∞)

T
provided given any t1 ∈ [ t0,∞)

T
, there is a K = K(t1) > 0, δ1 > 0, and q > 0

such that
|x(t, t1, x1)| ≤ Ke−q(t−t1)|x1|

for t ∈ [ t1,∞)
T
. If K does not depend on t1, then we say that the trivial solution is

uniformly exponentially asymptotically stable on [ t0,∞)
T
.

We will be concerned with the almost linear dynamic equation

x∆ = p(t)x + f(t, x), (2.2)

where we assume throughout that solutions of initial value problems for (2.2) are unique
and exist on the whole time scale interval [t0,∞)T, and we will let x(t) = x(t, t1, x1) denote
the unique solution of the IVP (2.2), x(t1) = x1.

The following theorem corresponds to Theorem 5.3 in [3] where they seem to ignore a
certain expression (see (2.4)) which could be unbounded.

Theorem 2.2. Let [t0,∞)T be unbounded above, and let N be a neighborhood of x = 0.
Assume f(t, x) is a real-valued continuous function for (t, x) ∈ [t0,∞)T ×N which satisfies
the condition

lim
x→0

f(t, x)

x
= 0 (2.3)

uniformly for t ∈ [t0,∞)T. Also assume

1

|1 + µ(t)p(t)|
≤ M (2.4)

for t ∈ [t0,∞)T for some M ∈ R+. If p ∈ R and q := lim sup
t→∞

βp(t) < 0, then the triv-

ial solution of (2.2) is exponentially asymptotically stable on [t0,∞)T. Furthermore, if
q̄ := sup{βp(t) : t ∈ [t0,∞)T} < 0, then the trivial solution of equation (2.2) is uniformly
exponentially asymptotically stable on [t0,∞)T.

Proof. Let x(t) = x(t, t1, x1), then by the variation of constants formula in Theorem 1.5 we
have

x(t) = ep(t, t1)x1 +

∫ t

t1

ep(t, σ(τ))f(τ, x(τ))∆τ

e	p(t, t1)x(t) = x1 +

∫ t

t1

e	p(t, t1)ep(t, σ(τ))f(τ, x(τ))∆τ

= x1 +

∫ t

t1

e	p(t, t1)e	p(σ(τ), t)f(τ, x(τ))∆τ

= x1 +

∫ t

t1

e	p(σ(τ), t1)f(τ, x(τ))∆τ.

From (2.3), we have given ε > 0, there exists a δ > 0 such that |f(t, x)| ≤ ε|x| for
t ∈ [t0,∞)T, |x| < δ. Now assume |x1| < δ, then for those t ∈ [t1,∞) such that |x(t)| < δ
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we have

|e	p(t, t1)x(t)| ≤ |x1| +

∫ t

t1

|e	p(σ(τ), t1)||f(τ, x(τ))|∆τ

≤ |x1| + ε

∫ t

t1

|e	p(σ(τ), t1)||x(τ)|∆τ

= |x1| + ε

∫ t

t1

|e	p(σ(τ), t1)x(τ)|∆τ

= |x1| + ε

∫ t

t1

|[1 + (	p)(τ)µ(τ)]e	p(τ, t1)x(τ)|∆τ

= |x1| + ε

∫ t

t1

1

|1 + µ(τ)p(τ)|
|e	p(τ, t1)x(τ)|∆τ.

In Gronwall’s Inequality (Theorem 1.6) we let f(t) = |x1|, g(t) = ε
|1+µ(t)p(t)| , and y(t) =

|e	p(t, t1)x(t)|. We get

|e	p(t, t1)x(t)| ≤ |x1| +

∫ t

t1

eg(t, σ(τ))|x1 |g(τ)∆τ

= |x1| + |x1|

∫ t

t1

e	g(σ(τ), t)g(τ)∆τ

= |x1| + |x1|

∫ t

t1

[1 + µ(τ)(	g)(τ)]e	g(τ, t1)g(τ)∆τ

= |x1| + |x1|

∫ t

t1

1

1 + g(τ)µ(τ)
e	g(τ, t)g(τ)∆τ

= |x1| − |x1|

∫ t

t1

(	g)(τ)e	g(τ, t)∆τ

= |x1| − |x1| [e	g(τ, t)]
τ=t

τ=t1

= |x1| − |x1|[e	g(t, t) − e	g(t1, t)]

= |x1|eg(t, t1).

Therefore,

|x(t)| ≤ |x1||ep(t, t1)|eg(t, t1)

as long as |x(t)| < δ.

Since 1
|1+µ(τ)p(τ) | ≤ M for t ∈ [t0,∞)T for some M ∈ R+ we get

eg(t, t1) = e ε
|1+µ(t)p(τ) |

(t, t1) = e
R

t

t1
ξµ(τ)( ε

|1+µ(τ)p(τ) | )∆τ

≤ e
R

t

t1
( ε

|1+µ(τ)p(τ) | )∆τ
(by Definition 1.7)

≤ e
R

t

t1
Mε∆τ

= eMε(t−t1).
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Therefore,
|x(t)| ≤ |ep(t, t1)|e

Mε(t−t1)|x1|.

Let q := lim supt→∞ βp(t) < q1 < 0, then there exists a T1 ∈ [t0,∞)T such that βp(t) ≤
q1 < 0 for all t ∈ [T1,∞)T.

Using this, Theorem 1.3, and Theorem 2.1 we have for t ∈ [t1,∞)T

|x(t)| ≤ |ep(t, t1)|e
Mε(t−t1)|x1|

= |ep(t, T1)||ep(T1, t1)|e
Mε(t−t1)||x1|

≤ eq1(t−T1)|ep(T1, t1)|e
Mε(t−t1)|x1|.

Now let

K =
|ep(T1, t1)|

eq1(T1−t1)
,

then

|x(t)| ≤ Keq1(t−t1)eMε(t−t1)|x1|

≤ Ke(q1+Mε)(t−t1)|x1| (2.5)

for t ∈ [t1,∞)T as long as |x(t)| < δ. Since q1 < 0, choose ε > 0, sufficiently small, so that
q1+Mε < 0. Note here that if |x1| is sufficiently small then |x(t)| < δ for t ∈ [t1,∞)T, so the
above steps are correct. But then we get that equation (2.2) is exponentially asymptotically
stable on [t0,∞)T.

Now suppose q̄ := sup{βp(t) : t ∈ [t0,∞)T} < 0. This implies βp(t) ≤ q̄ < 0 for all
t ∈ [t0,∞)T. Let t1 ∈ [t0,∞)T, then by Theorem 2.1 we have

|ep(t, t1)| ≤ eq̄(t−t1).

From this and (2.5),

|x(t)| = |x(t, t1, x1)| ≤ Keq̄(t−t1)eMε(t−t1)|x1|

= Ke(q̄+Mε)(t−t1)|x1|.

Since q̄ < 0, we can choose ε > 0, sufficiently small, so that q + Mε < 0. Therefore, the
trivial solution of (2.2) is uniformly exponentially asymptotically stable on [t0,∞)T.

Once we see the proof of Theorem 2.3 it is easy to prove the following result concerning
the linear homogeneous dynamic equation

x∆ = p(t)x. (2.6)

Theorem 2.3. Assume p ∈ T. If lim supt→∞ βp(t) = q < 0, then the trivial solution of
(2.6) is exponentially asymptotically stable on [t0,∞)T. If βp(t) ≤ q < 0, for t ∈ [t0,∞)T,
then the trivial solution of (2.6) is unifomly exponentially asymptotically stable on [t0,∞)T.
If lim inft→∞ βp(t) = q > 0, then the trivial solution of (2.6) is unstable on [t0,∞)T.
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As a corollary we now get a result due to Gard and Hoffacker [3].

Corollary 2.4. Suppose p is a regressive constant with p < 0. If

lim sup
t→∞

µ(t) < −
2

p
,

then the trivial solution of (2.6) is exponentially asymptotically stable on [t0,∞)T. If

sup{µ(t) : t ∈ [t0,∞)T} < −
2

p
,

then the trivial solution of (2.6) is uniformly exponentially asymptotically stable on [t0,∞)T.

Proof. For a constant p ∈ R define the function α by

α(µ) =

{ 1
µ

log |1 + µp|, µ > 0, µ 6= − 1
p
,

p, µ = 0.

Note that when p is a constant

βp(t) = α(µ(t)), t ∈ [t0,∞)T.

For p < 0, the graph of the function α is given in Figure 1.

-
1
�����
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-
2
�����
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-
4.5911
��������������������
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Figure 1: Graph of y = α(µ) where the constant p < 0.

From this graph we see that

lim sup
t→∞

µ(t) < −
2

p
,

implies that
lim sup

t→∞
βp(t) = lim sup

t→∞
α(µ(t)) < 0.

Also

sup{µ(t), t ∈ [t0,∞)T} <
−2

p
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implies that
sup{βp(t), t ∈ [t0,∞)T} < 0.

The conclusions of this corollary then follow from Theorem 2.3.

Similar to the proof of Corollary 2.4 we can use Theorem 2.1 to prove the following
result. This result appears in [3] but we need to assume (2.4) holds and we do not see how
to eliminate this assumption.

Corollary 2.5. Suppose p(t) ≡ p is a regressive constant with p < 0. Assume (2.3) and
(2.4) hold. If lim supt→∞ µ(t) < − 2

p
, then the trivial solution of (2.2) is exponentially

asymptotically stable on [t0,∞)T. If sup{µ(t) : t ∈ [t0,∞)T} < − 2
p
, then the trivial solution

of (2.2) is uniformly exponentially asymptotically stable on [t0,∞)T.

We now give a result where the linearized equation is unstable implies the almost linear
system (2.2) is unstable.

Theorem 2.6. Let [t0,∞)T be unbounded and let N be a neighborhood of x = 0. Assume
f(t, x) is a real-valued, continuous function for (t, x) ∈ T × N and

lim
x→0

f(t, x)

x
= 0

uniformly for t in T. Suppose p ∈ R and lim inf t→∞ p(t) > 0. Then the trivial solution of
(2.2) is unstable on [t0,∞)T.

Proof. Since lim inft→∞ p(t) > 0 and limx→0
f(t,x)

x
= 0 uniformly on [t0,∞)T, there is a

p̄ > 0, a t1 ∈ [t0,∞)T such that p(t) ≥ p̄ for t ∈ [t1,∞)T and if 0 < ε < p̄, then there is a
δ1 > 0 such that if |x| < δ1 then |f(t, x)| ≤ ε|x| for all t ∈ [t0,∞)T.

Suppose the trivial solution of (2.2) is stable on [t0,∞)T. Then there exists a δ2 satisfying
0 < δ2 ≤ δ1 such that if |x1| < δ2, then |x(t) := x(t, t1, x1)| < δ1 for all t ∈ [t1,∞)T. Fix
0 < x1 < δ2, then x(t1) = x1 > 0. We claim that x(t) > 0 on [t1,∞)T. If we assume not
then there is a point t2 ∈ [t1,∞)T such that

x(t2) ≤ 0, and x(t) > 0, t ∈ [t1, t2)T.

Then

x∆(t) = p(t)x(t) + f(t, x(t))

≥ p(t)x(t) − ε |x(t)|

≥ (p(t) − ε)x(t)

≥ (p̄ − ε)x(t) (2.7)

for t ∈ [t1, t2)T. But this implies x(t2) > 0 which is a contradiction. Hence x(t) > 0 on
[t1,∞)T and hence (2.7) holds on [t1,∞)T. But then it follows that

x(t) = x(t, t1, x1) ≥ ep̄−ε(t, t1)x1, t ∈ [t1,∞)T,

which contradicts the fact that |x(t)| ≤ δ1 for t ∈ [t1,∞)T.
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3 Examples

In population dynamics, the logistic equation is used frequently to model changes in popu-
lation. It is written

x∆ = [a 	 (gx)] x, (3.1)

where gx ∈ R. Note that (3.1) can be written in the form

x∆ =
a(t)

1 + µ(t)g(t)x
x −

g(t)

1 + µ(t)g(t)x
x2.

It is pointed out in [2] why this is the true logistic equation for time scales.

Example 3.1 (Logistic Equation). Suppose a ∈ R is a constant and N > 0 is a constant,
and define

g =
1

N
a, N > 0.

In this case the dynamic logistic equation is

x∆ =
a

1 + µ(t) a
N

x
x −

a

N(1 + µ(t) a
N

x)
x2. (3.2)

If x(t) is the population of some species at time t, then the constant a is called the intrinsic
growth rate and K is called the saturation level or enviromental carrying capacity
of the population.

We are interested in the equilibrium solution

x(t) = N.

Since our results concern the stability of the trivial solution we let

y(t) :=
a

g
− x(t) = N − x(t),

where x is a solution of (3.2). It can be shown that y then solves the dynamic equation

y∆ = (	a)(t)y +
ay2

N(1 + µ(t)a)(1 + µ(t)a − aµ(t)
N

y)
, (3.3)

which is of the form (2.2).

Consider the time scale T = hZ. Let p = (	a)(t) = −a
1+µ(t)a = − a

1+ha
. Then it can be

shown that p < 0 and µ(t) = h < − 2
p

iff a < − 2
h

or a > 0; and p > 0 iff − 1
h

< a < 0. Hence

by Corollary 2.5, we have that if a < − 2
h

or a > 0, (3.3) is uniformly exponentially stable;
and by Theorem 2.6 if − 1

h
< a < 0, (3.3) is unstable.

Note that neither Theorem 2.2 nor Corollary 2.5 applies to this example when

−
2

h
< a < −

1

h
.
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But, in this case, we can use Corollary 2.27 in [2] we get that if x0 > 0, then the solution of
the IVP (3.2), x(t0) = x0 is given by

x(t) =
1

1
N

+
(

1
x0

− 1
N

)

e	p(t, t0)

=
1

1
N

+
(

1
x0

− 1
N

)

ea(t, t0)

=
1

1
N

+
(

1
x0

− 1
N

)

(1 + ah)
t−t0

h

.

Note that since −1 < 1 + ah < 0, limt→∞ x(t) = N . Hence we see that the equilibrium
solution x(t) = N is asymptotically stable if

−
2

h
< a < −

1

h
.

Example 3.2. Consider the dynamic equation

x∆ = px − x2 (3.4)

with the time scale composed of infinitely many copies of the Cantor set C, that is

T =

∞
⋃

n=0

{t = n + c, c ∈ C}

and p = − 1
3 . Note that sup µ(t) = 1

3 and that inf µ(t) = 0. Observe that all the conditions
of Corollary 2.5 are satisfied:

p < 0,

sup µ(t) < −
2

p
= 6,

and
1

|1 + µ(t)p|
=

1
∣

∣1 − 1
3µ(t)

∣

∣

,

where this quantity reaches its maximum at sup µ(t) = 1
3 . Thus

1
∣

∣1− 1
3µ(t)

∣

∣

≤
9

8
= M

and finally

lim
x→0

(

−
x2

x

)

= lim
x→0

(−x) = 0.

Therefore, the trivial solution of (3.4) is uniformly exponentially asymptotically stable.
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