
Director, Center for Science, Mathematics and Computer Education
University of Nebraska-Lincoln
wsmith5 (at) unl (dot) edu
CV (updated August 2022)
Dr. Smith was an inaugural member of UNL's Research Leaders Program [2020-2021].
About Dr. Wendy Smith
Dr. Wendy Smith earned her Ph.D. from the University of Nebraska-Lincoln in 2008, studying mathematics teacher change. Wendy's research interests include PK-20 mathematics, science and computer science education, institutional change, active learning, education leadership, rural education, teacher change, teacher professional development, professional networks, action research, and estimating teacher professional learning effects on student achievement. Wendy began her career as a middle level mathematics teacher in the Lincoln Public Schools. Wendy's bachelor's and master's degrees are in mathematics, also from the University of Nebraska-Lincoln.
Among other roles and responsibilities, Wendy serves as the chief advisor for teachers earning their Master of Arts for Teachers (MAT) degree from the Department of Mathematics.
Recent Books
Smith, W. M., Voigt, M., Ström, A., Webb, D. C., & Martin, W. G., (Eds.) (2021). Transformational Change Efforts: Student Engagement in Mathematics Through an Institutional Network for Active Learning. American Mathematical Society and Mathematical Association of America Press, and the Conference Board of Mathematical Sciences.
The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?
Smith. W. M., & Funk. R. (2021). The Student Engagement in Mathematics through an Institutional Network for Active Learning project: An overview. In W. M. Smith, M. Voigt, A. Ström, and W. G. Martin (Eds.) Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning (Chapter 1, pp. 26-41). American Mathematical Society and Mathematical Association of America Press, and the Conference Board of Mathematical Sciences.
Smith. W. M., Funk, R., Voigt, M, & Uhing, K. (2021). Research design and methodology. In W. M. Smith, M. Voigt, A. Ström, and W. G. Martin (Eds.) Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning (Chapter 2, pp. 42-57). American Mathematical Society and Mathematical Association of America Press, and the Conference Board of Mathematical Sciences.
Funk. R., Smith, W. M., Uhing, K, & Williams, M. (2021). Phased Change University: A multistage approach to educational improvement. In W. M. Smith, M. Voigt, A. Ström, and W. G. Martin (Eds.) Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning (Chapter 3, pp. 60-79). American Mathematical Society and Mathematical Association of America Press, and the Conference Board of Mathematical Sciences.
Williams, M., Funk, R., Smith, W. M., & Uhing, K. (2021). Long-Term University: Building a self-sustaining system. In W. M. Smith, M. Voigt, A. Ström, and W. G. Martin (Eds.) Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning (Chapter 6, pp. 116-133). American Mathematical Society and Mathematical Association of America Press, and the Conference Board of Mathematical Sciences.
O’Sullivan. M. E., Smith, W. M., & Tubbs, R. (2021). Leadership. In W. M. Smith, M. Voigt, A. Ström, and W. G. Martin (Eds.) Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning (Chapter 10, pp. 210-227). American Mathematical Society and Mathematical Association of America Press, and the Conference Board of Mathematical Sciences.
Voigt, M., Smith, W. M., Kress, N., Grant, D., & Ström, A. (2021). Culture and equity. In W. M. Smith, M. Voigt, A. Ström, and W. G. Martin (Eds.) Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning (Chapter 15, pp. 300-321). American Mathematical Society and Mathematical Association of America Press, and the Conference Board of Mathematical Sciences.
Smith, W. M. and the SEMINAL team. (2021). Conclusion: Sustainable transformations. In W. M. Smith, M. Voigt, A. Ström, D. C. Webb, and W. G. Martin (Eds.), Transformational Change Efforts: Student Engagement in Mathematics Through an Institutional Network for Active Learning (Chapter 17, pp. 344-363). American Mathematical Society and Mathematical Association of America Press, and the Conference Board of Mathematical Sciences.
Tatto, M. T., Rodriguez, M. C., Smith, W. M., Reckase, M. D., Bankov, K. & Pippin, J. (2020). The First Five Years of Teaching Mathematics (FIRSTMATH): Concepts, Methods & Strategies for Comparative International Research. Cham, Switzerland: Springer International Publishing.
This book reports on an innovative study into the first five years of mathematics teaching: FIRSTMATH. For the first time, the study has developed a viable methodology to analyzethe knowledge, skills, and dispositions of beginning mathematics teachers as well as instruments to explore the contexts where they work. The book provides a step by step account of this exploratory (proof-of-concept) research study, using a comparative and international approach, and introduces readers to the challenges entailed. The FIRSTMATH study promises the development of methods and strategies to make it possible for teacher educators and future teachers to examine (and improve on) their own practices in an important STEM area.
As a co-authored book, most of us took the lead on at least one chapter; I wrote the observation chapter and co-wrote the first and last chapters.
Tatto, M. T., Smith, W. M., Rodriguez, M. C., Reckase, M., & Bankov, K. (Eds.) (2018). Exploring the Mathematical Education of Teachers Using TEDS-M Data. Switzerland: Springer.
This book uses the publicly available TEDS-M data to answer such questions as: How does teacher education contribute to the learning outcomes of future teachers? Are there programs that are more successful than others in helping teachers learn to teach mathematics? How does the local and national policy environment contribute to teacher education outcomes? It invites readers to explore these questions across a large number of international settings.
As a member of the editing team, I co-wrote the section introduction chapters. I also co-authored two of the research study chapters: one focused on teacher beliefs and the other on opportunities to learn.
Martin, W. G., Lawler, B. R., Lischka, A. E., & Smith, W. M. (Eds.) (2020). The Mathematics Teacher Education Partnership: The Power of a Networked Improvement Community to Transform Secondary Mathematics Teacher Preparation. Volume 4 in B. Benken (Ed.), Association of Mathematics Teacher Educators Professional Book Series. Charlotte, NC: Information Age Publishing.
This book relates how a national Networked Improvement Community (NIC) has been working together on improving secondary mathematics teacher preparation. The Mathematics Teacher Education Partnership formed in 2012, and operates as a NIC, with members working collectively in research action clusters, as well as locally on program transformation efforts.
As a member of the editorial team, I helped to write four chapters and the section introductions; I led the writing team for the chapter about the Active Learning Mathematics Research Action Cluster.